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Abstract

This paper sets forth a method for compressing mas-
sive geophysical data sets. A statistical model for re-
lationships between compressed and uncompressed data
is developed and used to evaluate compressors found by
an iterative clustering method based on the Entropy-
constrained Vector Quantization (ECVQ) algorithm of
Chou, Lookabaugh and Gray (1989). The method arbi-
trates between error induced by compression and level
of data reduction. Error includes a component that ac-
counts for uncertainty due to multiple local minima of
the ECVQ loss function. Dataset compressibility is iden-
tified as an important characteristic to consider when
setting the parameter that ultimately determines the
balance between error and data reduction. The proce-
dure is demonstrated using a well known data set from
the motivating application, Earth science.

1 Introduction

In December 1999 NASA launched its first Earth Ob-
serving System (EOS) satellite, Terra, into polar orbit.
Terra carries five instruments designed to study vari-
ous aspects of Earth’s climate systems over the next
six years, and will produce vast quantities of high res-
olution geophysical data. This paper describes a strat-
egy for summarizing this type of data to preserve its
high resolution features. The strategy is being devel-
oped for one instrument aboard Terra, the Multi-angle
Imaging SpectroRadiometer (MISR). Since MISR data
are not yet available, this exercise uses a subset of an-
other well known geophysical data set for demonstration
purposes. The test data come from the International
Satellite Cloud Climatology Project, ISCCP. Both MISR
and ISCCP are typical of geophysical data sets produced
from remote sensing instruments. To provide context
and a sense of scale for EOS data, the next section de-
scribes MISR’s data stream. ISCCP data are described
in Section 6.

2 The MISR Data Stream

MISR is a set of nine cameras mounted underneath
Terra, looking down at Earth at nine different angles
(−70.5◦, −60.0◦, −45.6◦, and −26.1◦ aft; 0◦ nadir;
+70.5◦,+60.0◦, +45.6◦, and +26.1◦ forward) along the
direction of flight. Each camera has four line arrays of
1504 pixel across the field of view (east-west) perpen-
dicular the flight track (north-south). Each line array
is sensitive to one of four wavelengths: NIR, red, green
and blue (446, 558, 672 and 866 nanometers), and each
pixel views a square region on the ground 275 meters on
a side. Thus, one orbital swath on the daylight side of
Earth tiles the view into disjoint, contiguous 275 meter
spatial regions, and produces 36 radiance measurements
for each one. The instrument does not take data as the
satellite travels up the night side, so sequential orbits are
separated. After 16 days 233 unique but overlapping or-
bits have completed covering the whole Earth, and every
234th orbit covers the same ground track as the first.

MISR data processing takes this radiance data
through several steps. First, data are geometrically and
radiometrically calibrated to create the so-called “Level
1” product. There is a seven minute lag between the
forward and aft-most views of the same scene. Geomet-
ric rectification aligns the observations to produce 36
measurements (nine angles by four wavelengths) associ-
ated with the latitude and longitude of each pixel cen-
ter. There will be about about 30 terabytes per year of
Level 1 MISR data. Second, Level 2 data are created by
converting these 36-vectors into geophysical quantities
through complex science algorithms. For example, mea-
surements taken within a 17.6 kilometer area are used to
derive aerosol type and amount by matching observed ra-
diances with those predicted by various physical models.
Other quantities such as cloud height, wind direction and
speed, and fraction of photosynthetically active absorbed
radiation are derived at other spatial resolutions (typi-
cally 1.1, 2.2, and 35.2 kilometers). This second stage of
processing reduces data volume by reducing spatial res-



olution, but increases data volume because many more
than 36 geophysical variables are derived. MISR will
generate about three terabytes a year of Level 2 data.

The third processing step creates monthly summaries
of Level 2 derived geophysical data by partitioning the
observations according to their membership in cells of
a 1◦ latitude by 1◦ longitude spatial grid. In the past
this Level 3 product has been constructed by simply re-
porting means, standard deviations and sometimes other
simple descriptors of the data in each cell.

Level 3 is essential in view of the massive size of Level
2. NASA will publish MISR data for use by researchers
at universities and other institutions, many of whom
can’t work with Level 2 in its entirety. These users must
either work with low resolution Level 3 data, or sub-
sets of Level 2. Both alternatives pose difficulties. Low
resolution summaries based on means and standard de-
viations do not capture high resolution multivariate rela-
tionships. Subsets do not take advantage of global cover-
age. Moreover, before examining the data, analysts can
only choose subsets based on location and time. There
is no way to know which areas and which times contain
phenomena of interest without exploring the data first.

The purpose of the method discussed here is to pro-
vide a low volume, low resolution road map of the vo-
luminous, high resolution Level 2 data without destroy-
ing high resolution relationships. Briefly, the strategy is
(each month) to partition Level 2 into 1◦ latitude by 1◦

longitude spatial cells, and summarize each cell with a
set of representative points and their associated frequen-
cies. Each representative point stands for some number
of original observations, that number being given by fre-
quency. The combination of representatives and counts
is a compressed version, or summary, of the original data.
The algorithm used to find the clusters and their repre-
sentatives is a modification of the entropy-constrained
vector quantization algorithm (ECVQ) of Chou, Look-
abaugh and Gray (1989).

3 ECVQ

ECVQ is an iterative algorithm that groups data into a
collection of disjoint clusters so as to minimize the loss
function

Lλ =
N∑
n=1

‖yn − q(yn)‖2 + λ

[
−log

f(yn)
N

]
, (1)

where yn is the nth row of an N × C data matrix (rep-
resenting one spatial cell in one month, for example).
q(yn) is the representative of the group to which yn is
assigned, f(yn) is the number of data points (rows) as-
signed to the same group as yn, and λ is a fixed constant.

− log (N(k)/N) is a positive number and varies inversely
with N(k). Thus, if ‖yn − β(k1)‖2 = ‖yn − β(k2)‖2, yn
would be assigned to cluster k2 if N(k2) is larger than
N(k1). When λ = 0, Lλ is euclidian distance, and ECVQ
is equivalent to the batch version of the K-means clus-
tering procedure (MacQueen, 1967).

The function q(·), called a quantizer, can be written
as the composition of two functions, q(yn) = β(α(yn)).
α, called the encoder, takes a C-dimensional data point
and returns an integer providing the index of the cluster
to which yn is assigned. β, the decoder, takes the index,
k, and returns the representative for cluster k. In this
application β(k) will always be the mean vector of cluster
k. Also, define N(k) as the number of yn assigned to
cluster k:

N(k) =
N∑
n=1

1[α(yn) = k],

β(k) =
1

N(k)

N∑
n=1

yn1[α(yn) = k].

Here is a brief description of the ECVQ algorithm:

1. Fix the maximum number of clusters allowed, K,
and the compression parameter, λ.

2. Arbitrarily assign the yn’s to the K clusters by spec-
ifying initial values for α(yn). Compute means and
frequencies of these clusters, and denote them β(k)
and N(k) respectively, for k = 1, 2, . . . ,K.

3. Reassign each yn to the cluster with the smallest
loss:

α(yn) = argmink

{
‖yn − β(α(yn))‖2

+ λ

[
−log

N(α(yn))
N

]}
.

4. Update β(k) and N(k) for all k.

5. Eliminate any clusters for which N(k) = 0.

6. Repeat steps (3), (4) and (5) until convergence.

The ECVQ solution has the property that the β(k)’s are
the means of the yn’s they represent. This is a feature
that will be important in Section 4.

The algorithm is guaranteed to converge in a finite
number of steps, but not necessarily to either a local or
global minimum. However the solution improves on the
starting point, and provides a sensible summary of the
yn’s in the sense described by MacQueen: “The point of
view taken in this application is not to find some unique,



definitive grouping, but rather to simply aid the inves-
tigator in obtaining qualitative and quantitative under-
standing of large amounts of . . . data by providing him
with reasonably good similarity groups.” (MacQueen,
1967, page 288.)

To apply ECVQ to subsets created by partitioning
large or massive geophysical data sets, two modifica-
tions are made. First, a sample of M rows is chosen.
ECVQ is applied to it, and an initial set of representa-
tives, {β∗(k)}K

∗

k=1, obtained. The second modification is
to pass through the yn’s again assigning them to their
nearest β∗(k). Empty clusters are deleted, and represen-
tatives and counts updated to reflect the second pass.
In other words, a preliminary set of representatives is
determined from a sample, then the entire data set is
clustered using them. The ultimate set of clusters and
counts thus reflects all the data. The first step of this
procedure is called the design step, and the second is
called the binning step. The final subset summary is{
β̃(k), Ñ(k)

}K̃
k=1

.
Since the design step is carried out on a sample, the

final summary is subject to sampling variation. The next
section describes a statistical framework in which to as-
sess that variability along with the quality and parsi-
mony of summaries.

4 A Statistical Model for Com-
pressed Data

Consider a randomly drawn row from the N × C data
matrix representing one subset of a partitioned massive
geophysical data set. Let that draw be the random vec-
tor Y . Y has the empirical distribution of the subset;
P (Y = yn) = 1/N . Now let Q = q(Y ) for some quan-
tizer function q obtained from ECVQ. Q is a determin-
istic function of Y with the property that Q = E(Y |Q).
This property is called self-consistency of Q for Y by
Tarpey and Flury (1996).

Self-consistency imparts several important properties
on Q as an estimate of Y :

E(t′Q) = E(t′Y ), (2)
V ar(t′Q) ≤ V ar(t′Y ), (3)
Cov(Y −Q) = Cov(Y )− Cov(Q), (4)

E‖g(Y )− g(Q)‖2 ≈∑
ij

E
[
ġ(i)ġ(j)E(Y(i)Y(j)|Q)−Q(i)Q(j)

]
, (5)

where the subscript (i) indicates the ith component
of Y or Q, and ġi = ∂g(Q)/∂Q(i). In (2) and

(3) t is a C × 1 vector. (2) and (3) show that
linear functions of Q are unbiased estimates of the
same functions of Y , and have lower variance. (4)
follows from Cov(Y,Q) = E(Y Q′) − [E(Y )][E(Q)]′

= E [E(Y Q′|Q)] − [E(Q)][E(Q)]′ = E [E(Y |Q)Q′] −
[E(Q)][E(Q)]′ = E(QQ′) − [E(Q)][E(Q)]′ = Cov(Q),
and shows that the covariance of the error in Q as an
estimate of Y is the difference in the covariance matrices
of Q and Y . Finally, the mean squared error between
an arbitrary continuous function of Y and its estimate
computed from Q is approximated by (5).

Two figures of merit are used to judge the quality of
q. Distortion, δ(Y,Q), measures mean squared error of
Q as an estimate of Y :

δ(Y,Q) = E‖Y −Q‖2 = trCov(Y −Q). (6)

Data reduction, ∆(Y,Q), is the difference in entropies
between Y and Q. The entropy of a discrete random
variable such as Q is

h(Q) = −
∑
ξ

P (Q = ξ) logP (Q = ξ)

where ξ indexes realizations of Q. Therefore, data re-
duction is

∆(Y,Q) = h(Y )− h(Q)

= logN −

[
− 1
N

∑
n

log
N(α(yn))

N

]
= E[logN(α(Y ))], (7)

where N(α(yn)) is the population of the cluster to which
yn is assigned by the quantizer’s encoder.

Generally, quantizers with high data reduction tend
to have large distortion and vica-versa. Consider two ex-
tremes. The identity quantizer (which can be obtained
from ECVQ by setting K = N and λ = 0) assigns each
data point to its own cluster, and therefore leaves the
data unchanged. This produces no distortion, but no
data reduction either. N(k) = 1 for each of the N
clusters, ∆(Y,Q) = log 1 = 0. At the other extreme,
(as when ECVQ is run with K = 1) all data points
are assigned to a single cluster for which the representa-
tive is the subset centroid. Distortion is trCov(Y ), the
maximum possible value when the decoder is the mean
function. Data reduction is also at its maximum, logN .
Finding a good intermediate solution means finding a
good compromise between data reduction and distortion.
Under ECVQ the compromise depends on the parameter
λ. More will be said about this in Section 6.

Now suppose that R quantizer functions are available,
each with the self-consistency property, and one of them



is chosen at random to quantize Y . This models the
situation in which a random training set is used in the
design step.

Q∗ =
∑
r

qr(Y )1[ρ = r],

where ρ is an integer valued random variable specifying
which quantizer is selected, and qr is the rth quantizer
function. Q∗ is called a random quantizer, and inherits
some but not all properties of Q. Linear functions of
Q∗ are unbiased for corresponding functions of Y , and
Cov(Y − Q∗) = Cov(Y ) − Cov(Q∗) even though Q∗ is
not self-consistent for Y . The approximation (5) holds
with Q∗ substituted for Q.

Distortion and data reduction of Q∗ are analogous to
those of Q except that expectations in (6) and (7) are
with respect to both Y and ρ. Y and ρ are independent,
but Q∗ is jointly distributed with both of them. To eval-
uate quantizers produced by ECVQ from training sets,
it is necessary to consider variation over training sets, as
embodied by variation of ρ. For distortion, write

δ(Y,Q∗) = E
[
E‖Y −Q∗‖2|ρ

]
(8)

= trCov(Y −Q∗)
= trE[Cov(Q∗|Y )] +
trE

{
[Y − E(Q∗|Y )][Y − E(Q∗|Y )]′

}
. (9)

(8) provides the basis for estimating δ(Y,Q∗) from the
simulation discussed in the next section. (9) shows that
δ(Y,Q∗) can be decomposed in a different way; into com-
ponents related to bias and variance. The bias compo-
nent is the second term on the right side of (9), and
gives a measure of the average squared amount by which
a randomly quantized random draw from the data devi-
ates from its true value. The first term on the right side
of (9) is a measure of instability in quantizer selection.
Though this decomposition is useful, estimation of bias
and instability is not pursued here. Data reduction for
a randomly chosen quantizer is

∆(Y,Q∗) = h(Y )− h(Q∗) = logN − h(Q∗). (10)

5 Estimating Random Quantizer
Performance

When ECVQ is applied to a sample and the result used
to cluster the parent data, it is important to characterize
distortion and data reduction in a way that accounts for
sampling variation. Suppose S random summaries are
generated for the same spatio-temporal subset. Let δs be
the distortion of the sth summary obtained. Let hs be

the entropy of the distribution of the summary obtained
on the sth trial. Define

δs =
1
N

N∑
n=1

‖yn − β(α̃s(yn))‖2,

hs = − 1
N

N∑
n=1

log
N(α̃s(yn))

N
,

where α̃s is the final encoder obtained on the sth trial.
An estimate of δ(Y,Q∗) is

δ̄ =
1
S

S∑
s=1

δs.

However

h̄ =
1
S

S∑
s=1

hs

does not estimate h(Q∗); it estimates conditional en-
tropy, h(Q∗|ρ). Conditional entropy is defined as

h(Q∗|ρ) =
∑
r

P (ρ = r)h(Q∗|ρ = r),

h(Q∗|ρ = r) = −
∑
ξr

P (Q∗ = ξr) logP (Q∗ = ξr)

(Cover and Thomas, 1991, page 16). Since h(Q∗|ρ) ≤
h(Q∗),

∆̂ = logN − h̄

is an estimated upper bound for ∆(Y,Q∗), not a point
estimate.

Now, armed with S summaries of the same data it
would be foolish not to use the best one. The summary
with the minimum δs will be used to summarize the data
even though the estimate of δ(Y,Q∗) applies to a process
in which a summary is chosen at random. Let s∗ be the
index of the summary with the smallest value of δs. Then
δs∗ ≤ δs, and E(δs∗) ≤ E(δs). Since δ̄ estimates E(δs),
δ̄ is an estimated upper bound on the distortion for the
process which selects the best summary.

6 Application to ISCCP

To illustrate estimation of distortion and data reduction,
and how their estimates relate to the choice of λ, the
method in Section 3 is applied to a test data set. The
test data come from the International Satellite Cloud
Climatology Project (ISCCP). ISCCP has collected data
on cloud type and amount from a multitude of satellites



Figure 1: Variance of δ̄ over subsets.

beginning in 1983. Raw data are visible and infrared
radiances measured for pixels 25 kilometers on a side.
Each measurement has a latitude and longitude (mea-
sured to the nearest tenth of a degree) and a date and
time. Time is measured in three hour intervals (00, 03,
06, etc. GMT). Radiances are combined with other in-
formation (e.g. surface topography) and run through
science algorithms to derive the ISCCP equivalent of
MISR’s Level 2: cloud top pressure (PC) and optical
thickness (TAU). Optical thickness is a unitless mea-
sure of attenuation of energy through a column of atmo-
sphere. Cloud top pressure is measured in millibars. For
cloudy pixels cloud top pressure and optical thickness
determine cloud type via the decision matrix in Table 1.

Cloud Top Cloud Optical Thickness
Pressure (MB) 0 to 3.6 3.6 to 23 23 to 379

50 to 440 Cirrus Cirro- Deep
(High) stratus Convection

440 to 680 Alto- Alto- Nimbo-
(Middle) cumulus stratus stratus

680 to 1000 Cumulus Strato- Stratus
(Low) cumulus

Table 1: ISCCP radiometric cloud classification.

Test data are daytime PC and TAU measurements

from July 1991, in pixels identified by ISCCP data pro-
cessing as cloudy, and located in the northern half of the
western hemisphere (latitude 0◦ to 90◦, longitude 0◦ to
180◦) . This yields a relatively small data set having
about 5.2 million observations; small enough that true
data set quantities can be calculated and compared to
their analogues obtained from compressed data.

In this exercise test data are partitioned into subsets
on a 10◦ by 10◦ grid. For example, all measurements
with latitudes between zero and 9.9 (inclusive) and lon-
gitudes between 20 and 29.9 (say) belong to the sub-
set for the cell with southwest corner (0, 20). (Cells are
identified by the coordinates of their southwest corners.)
There are roughly 30,000 observations per cell. This is
comparable to the population of a 1◦ by 1◦MISR cell,
though MISR data will have higher dimensionality and
more cells.

For each of the 162 ISCCP subsets, a nine element
vector of cloud type proportions, p, is obtained from the
raw data. Each element is the proportion of cloudy pix-
els in the subset determined to be of one of the nine
cloud types. Then the raw data are compressed, and
an estimate of the cloud type proportion vector con-
structed from the summary. This is a simple example of
the type of transformation often applied to geophysical
data. Cloud type is a non-linear, discontinuous function
of PC and TAU . The hope is that the same function
applied to compressed data yields a reasonable estimate
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Figure 2: Relative δ̄ (left) and relative ∆̂ (right), by subset, for data compressed at λ = 0.2.

of the “true” value computed from raw data.
ECVQ is applied to all 162 subsets independently us-

ing training sets of size M = 500, K = 10 for the
initial number of clusters, and six different values of
λ: 0, 0.2, 0.4, 0.6, 0.8, and 1.0. This is done S = 300
times. Before starting, subsets were standardized using
the means and standard deviations of all 5.2 million data
points.

Figure 1 is a plot of the variances of the δ̄’s over sub-
sets as a function of λ. The figure shows the variance
is minimized at λ = 0.2. Minimum variance in δ̄ over
subsets is grounds for choosing λ = 0.2 because at this
value subset summaries are of similar quality, and so
differences between summaries reflect differences in the
data, not differences in how well summaries match their
parent subsets.

Figure 2 shows estimates of δ̄ and ∆̂ for λ = 0.2 in the
form of maps. δ̄ for a given subset is expressed relative
the average data vector norm in that subset. The left
panel shows Nδ̄/

∑N
n=1 ‖yn‖. ∆̂ is expressed relative to

raw subset complexity. The right panel shows [logN −
∆̂]/ logN . In most cases relative distortion is in the 15
percent range. Relative data reduction is high, ranging
from 79 to 96 percent of raw data complexity.

Generally, subsets with high data reduction also have

high distortion, but there are exceptions. For example,
regions over the north Atlantic Ocean and Great Britain
show relatively high distortion and relatively low data re-
duction, suggesting that data in these subsets are com-
plex and difficult to compress. In contrast, the region
with southwest corner (20,-160) has relatively high data
reduction and relatively low distortion. Setting λ is like
setting the contrast level in an image: it should be sen-
sitive to the “dynamic range” of data values across sub-
sets. The fact that λ = 0.2 reveals compressibility dif-
ferentials suggests it is appropriately sensitive, and thus
represents a good compromise between distortion and
data reduction.

The minimum distortion summary of each subset de-
rived at λ = 0.2 is adopted. Cluster representatives were
destandardized for purposes of computing the estimate
of p. Section 4 showed properties of linear functions of
compressed data as estimates of those same functions of
raw data, and how well mean squared errors for non-
linear functions could be estimated. However, equation
(5) cannot be applied to discontinuous functions like the
one that converts cloud top pressure and optical thick-
ness into cloud type.

To get an idea how well cloud type proportions are es-
timated from compressed data, Figure 3 compares cloud



a. Deep convection, raw. b. Deep convection, compressed.

c. Cumulus, raw. d. Cumulus, compressed.

e. Stratocumulus, raw. f. Stratocumulus, compressed.

g. Stratus, raw. h. Stratus, compressed.

Figure 3: Cloud type proportions computed from raw data and data compressed at λ = 0.2



Figure 4: Raw and compressed data for cell (40,−70).

type proportions computed from raw and compressed
data for four cloud types representing the best and worst
performance among the nine types. (Colors bars are not
shown in the figure. The ranges of values depicted from
dark to light are as follows. Deep convection: zero to
0.28. Cumulus: zero to 0.60. Stratocumulus: zero to
0.88. Stratus: zero to 0.27.) Overall, quantized maps
show less spatial continuity than their uncompressed
counterparts. Visually, stratocumulus is the worst, over-
estimating its proportion in a many areas. Even so, “hot
spots” are identifiable.

The artifically large ten degree grid at least partially
accounts for discrepancies in Figure 3. Two artifacts are
to blame. First, large grid cells will necessarily create
a blockier visual effect than smaller ones. Second, and
more important, ten degree cells are too heterogenous
with respect to cloud top pressure and optical thickness.
Figure 4 shows why. The floor of Figure 4 is a scatter-
plot of cloud top pressure and optical thickness for one
10◦ spatial region, the region over Nova Scotia (40,-70).
Positions of the cluster means are shown by locations
of the spikes, and heights of spikes show cluster popu-
lations. Cloud types are shown in different colors for
both raw data and cluster representatives according to
the key.

Sharp and somewhat arbitrary boundaries between
cloud types are not reflected in any cluster structure be-
cause the data points blanket PC-TAU space. Spikes

located just inside the region corresponding to one cloud
type are frequently the best representative for points in
regions belonging to other types. This is less often the
case on a finer grid, where one or two cloud types tend
to dominate a spatial region and there is more clustering
in observation space (see Braverman, 1999).

7 Summary and Conclusions

This paper discusses the context and logic behind use of
a lossy data compression algorithm to create compressed
versions of large or massive geophysical data sets. The
proposed method requires partitioning the data into sub-
sets, and applying the algorithm separately to each one.
A parameter specifying the trade-off between data reduc-
tion and induced error must be specified. Data reduc-
tion and error are measured by expectations over random
quantizer functions used to summarize the data. Esti-
mators for these expectations are motivated by a sta-
tistical model for the relationship between compressed
(summarized) and raw data. A criterion for choosing
the parameter is discussed.

In its present form this method would probably have
difficulty with the MISR data stream. A major imped-
iment is the binning step discussed in Section 3, which
requires multiple passes through the data. A remedial
modification would be to use samples obtained in the



design step to estimate mean squared error. λ could be
selected using the estimate, as could the minimum mean
squared error quantizer. Only two passes through a full
subset would then be necessary: one to obtain a sample
and the other to (finally) bin the data. Other computa-
tional savings are possible by reducing sample size and
numbers of clusters allowed.

Another potential computational difficulty arises from
high dimensionality. This exercise used bivariate data,
but MISR and other massive geophysical data sets have
many more than two variables. Data could be projected
into principal component subspaces for purposes of the
design step, then cluster representatives retransformed
back to observation space before binning. These and
other modifications are being investigated.

These modifications will come at some cost in terms of
error. How much depends strongly on the data. In fact,
success of the method in general depends on the data.
When they are clustered, ECVQ can be expected to do
well; it is a penalized clustering algorithm. When the
data are not clustered, summaries may be less convincing
because some subsets are just hard to describe. The
figures of merit calibrate quality of ECVQ summaries,
and users of compressed data must be mindful of quality
issues. It is up to the user to decide when the ECVQ
road map of Level 2 is adequate to their needs.
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