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Abstract

Using two general linear regression models, we compared the ability of the aerosol optical thickness (AOT) retrieved by the Multiangle
Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to predict ground-level PM2.5

concentrations in St. Louis, MO and its surrounding areas . The models included meteorological parameters obtained from the National Oceanic
and Atmospheric Administration (NOAA)'s Rapid Update Cycle (RUC20) model as covariates. Both MISR and MODIS AOT values were highly
significant predictors of PM2.5 concentrations. The MISR and MODIS models have overall comparable predictability of ground-level PM2.5

concentrations. The MISR model explained a slightly greater percentage (62%) of the variability in PM2.5 concentrations than the MODIS model
(51%), and thus was a better fit. Over the entire data range, the MISR model underpredicts PM2.5 concentrations by approximately 12%, whereas
the MODIS model underpredicts PM2.5 concentrations by approximately 18%. This underestimation occurred primarily at higher PM2.5

concentrations in both models. The regression coefficients from two models were highly comparable, suggesting that combining MISR and
MODIS AOT data might benefit from the higher predicting accuracy of MISR and the better spatial coverage of MODIS. The newly developed
particle size/shape indicators in MISR and MODIS aerosol product did not significantly improve our ability to predict PM2.5 concentrations using
AOT measurements. Finally, using hourly PM2.5 concentrations did not seem to improve its association with AOT for the current study region.
© 2006 Elsevier Inc. All rights reserved.
Keywords: MISR; MODIS; Aerosol optical thickness; AOT; PM2.5; Particulate matter; Statistical analysis; General linear model; Terra satellite; St. Louis; Particle
health effects
1. Introduction

Exposure to fine particulate matter (PM2.5, particles smaller
than 2.5 μm in aerodynamic diameter) has been associated with
adverse health effects such as mortality, asthma, and chronic
obstructive pulmonary disease (COPD) (Pope & Dockery,
1999; Rojas-Bracho et al., 2000; Schwartz et al., 1996). Air
pollution epidemiologic studies, such as the highly influential
Six Cities study (Dockery et al., 1993) and American Cancer
Society (ACS) study (Pope et al., 1995) linked study
participants with existing pollution level measurements from
ground-level monitoring stations in order to examine the
association between particle air pollution and its effect on
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public health. A major limitation faced in these and similar
studies is the ability to reliably capture particle exposure for the
study population. The current PM2.5 monitoring network, which
is overseen by the United States Environmental Protection
Agency (USEPA) and operated by the state, local, and tribal air
pollution control agencies, includes approximately 1000
Federal Reference Method (FRM) and 200 continuous PM2.5

monitors as well as 200 PM2.5 speciation monitors. Even with
this large number of monitors, many rural and suburban regions
as well as some smaller urban areas are not covered. In these
studies, an average PM2.5 pollution level often had to be
assigned to the entire community within a certain distance of
each monitor. The lack of spatial coverage and misclassification
of PM2.5 exposure can severely reduce the statistical strength of
these studies and bias the results towards the null hypothesis of
no significant association between pollution and adverse health
outcomes. Statistical interpolation based solely on PM2.5
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concentrations measured at central stations may extend the
spatial coverage but can also introduce substantial uncertainty.

Since 1999, the National Aeronautics and Space Adminis-
tration (NASA) has launched a series of satellite sensors,
including the Multiangle Imaging SpectroRadiometer (MISR)
(Diner et al., 2002) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Remer et al., 2005). Both aboard
the Terra satellite, these two sensors can measure particle
abundance and composition with nearly global coverage at
moderate spatial resolutions. Particle information retrieved by
satellite sensors may be suitable for monitoring PM2.5

concentration spatial and temporal trends over large geograph-
ical areas. As a rapidly developing new technology, the
capabilities and products of satellite remote sensing are
generally unfamiliar to the PM monitoring and public health
research communities. To date, there are a limited number of
published studies that apply satellite retrieved particle properties
to quantitatively indicate ambient PM2.5 concentration levels.
One study found a linear relationship (correlation coefficient
r=0.7) between MODIS AOT and PM2.5 concentrations
measured by tapered-element oscillating microbalances
(TEOM) in Jefferson County, Alabama (Wang & Christopher,
2003). Another study showed mixed results when comparing
MODIS AOT with 24-h PM10 (particles smaller than 10 μm in
aerodynamic diameter) concentrations, where a linear relation-
ship was found (r=0.82) at one site in Italy but not at two other
sites in Los Angeles and Beijing (Chu et al., 2003). MODIS data
Fig. 1. The study region and the distribution of EPA PM2.5 monitors, urban areas, and
left corner. The domain is marked as the thick grey square. The St. Louis PM2.5 no
has also been examined as an indicator of air quality on a
regional scale (Engel-Cox et al., 2004). It was found that the
correlation between MODIS AOT and 24-h PM2.5 concentra-
tion was stronger in the eastern U.S. than in the western U.S.

Most studies examining the association between particle
concentrations and AOT applied simple statistical tools such as
linear correlation and simple linear regression with AOT as the
only PM2.5 concentration predictor. These techniques are not
sufficient to describe the complex relationship between AOT
and PM2.5. In a previous study (Liu et al., 2005), we showed
that the association between PM2.5 concentration and MISR
AOT can be strongly influenced by meteorological, geograph-
ical, and seasonal conditions. Of particular importance is the
aerosol vertical distribution, which provides a link between
ground-level PM2.5 concentrations, of major interest for air
quality, and the total-column AOT measured by MISR. Since
these factors show such importance, they should be consi-
dered when relating satellite AOT measurements to PM2.5

concentration.
MISR and MODIS have different instrument designs and

retrieve aerosol optical properties using different algorithms.
MISR uses the systematic change in atmosphere and surface
contributions to top-of-atmosphere reflection signals observed
by its nine view angles at four wavelength bands to retrieve
aerosol information over land. MISR AOT and other aerosol
information are calculated based on a rich set of aerosol mixture
models and reported at 17.6 km resolution. It has a global
interstate highways. The geographic location of the domain is shown in the upper
n-attainment area designated by EPA is the area with grey hatch.
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coverage between two and nine days depending on latitude.
MODIS uses prescribed spectral relationships between its blue
(470 nm), red (660 nm), and shortwave infrared (2.13 μm)
wavelength bands to retrieve aerosol information over land.
MODIS AOT and other aerosol information are calculated
based on simplified assumptions of particle composition, and
reported at 10 km resolution. MODIS has a global coverage of
1–2 days. Both sensors pass over the northern hemisphere
between 10:00 am and noon. Since they are both aboard the
NASATerra satellite, data generated by these two sensors may
complement each other with regard to measurement accuracy
and spatial coverage. We are not aware of any study that
compares the capability of MISR and MODIS AOT to predict
PM2.5 concentrations in a similar modeling setting. In the
current analysis, we develop two general linear regression
models using MISR and MODIS AOT, respectively as the main
predictor of PM2.5 concentration, and a few assimilated
meteorological parameters as covariates. Subsequently, we
compare the performance of the two models and examine their
similarities. We evaluate the impact of newly developed MISR
and MODIS particle size parameters on model performance as
well as the influence of sample size on predictor stability.
Finally, we examine whether the temporal resolution of PM2.5

concentration has any impact on model performance.

2. Data collection and integration

The study region for the current analysis is an approximately
300 km by 300 km, relatively flat region covering southwestern
Illinois and eastern Missouri (latitude range [37.2°N, 40.0°N],
longitude range [89.5°W, 93.0°W]) (Fig. 1). The region
contains the city of St. Louis and the surrounding counties,
which EPA designated as a PM2.5 non-attainment area in April
2005. According to the 2000 Census, there are 29 communities
with a population over 20,000 in this region, and the St. Louis
metropolitan area is a major industrial center with a population
of 2.5 million. We chose this study domain to represent various
PM2.5 pollution levels found in large metropolitan areas as well
as surrounding suburban and rural areas. There are more than 20
PM2.5 EPA monitors as well as the EPA St. Louis PM Supersite
in the region, measuring both general population exposure in
urban and suburban settings and environmental backgrounds.
Our study region is climatologically affected by a wide range of
synoptic weather patterns and is free of localized influences
from the Great Lakes, the oceans, the Gulf of Mexico, and
mountains. The relatively flat inland terrain is likely to simplify
the atmospheric boundary layer structure and improve the
quality of assimilated meteorological parameters used in the
analysis.

2.1. MISR and MODIS aerosol data

We downloaded MISR aerosol data (version 15) covering
our study region for 2003 from the Atmospheric Sciences Data
Center at NASA Langley Research Center (http://eosweb.larc.
nasa.gov). We extracted AOT at 558 nm (MISR parameter
name: RegBestEstimateSpectralOptDepth) and the AOT frac-
tions by particle shape (MISR parameter name: RegBestEsti-
mateSpectralOptDepthFraction, fourth and fifth components).
The AOT fractions by particle shape give the percent contri-
bution of spherical particles such as particles of anthropogenic
origin and sea salt particles to the total MISR AOT, and the
percentage contribution of nonspherical particles such as
mineral dust and possibly thin cirrus to the total MISR AOT
(these two percentages add up to 100%). Because there are no
major local dust emission sources in our study region,
transported dust is probably the major contributor to the
nonspherical fraction of MISR AOT in the St. Louis area. Since
transported dust plumes tend to move above the boundary layer,
they are likely irrelevant to ground level PM2.5 concentrations in
our study region. Therefore, the spherical fraction of MISR
AOT, called MISR partial AOT hereinafter, might be a better
predictor of ground-level concentrations as compared to the
total MISR AOT.

We downloaded 2003 MODIS aerosol data (collection 4)
from the Earth Observing System Data Gateway at the Goddard
Space Flight Center (http://delenn.gsfc.nasa.gov/~imswww/
pub/imswelcome). We extracted AOT at 550 nm (MODIS
parameter name: Optical_Depth_Land_And_Ocean). Over
land, the MODIS AOT fraction of fine mode particles
(MODIS parameter name: Optical_Depth_Ratio_Small_Land)
is a rough estimate based on the ratio of MODIS path radiances
at 660 nm and 470 nm (Remer et al., 2005). We calculated the
MODIS partial AOT by including only the AOT fraction due to
fine mode particles.

In the analysis described later in this paper, we evaluated
whether the MISR and MODIS partial AOT values could better
predict ground level PM2.5 than the total AOT values. The quality
control flags in both theMISR andMODIS products were used to
prevent low-quality data from entering the data processing
(Wedad Abdou and Lorraine Remer, personal communication).

2.2. EPA PM2.5 measurements

The PM2.5 data in our study region for 2003 were
downloaded from the EPA's Air Quality System Technology
Transfer Network (http://www.epa.gov/ttn/airs/airsaqs). We
collected 24-h average PM2.5 mass concentrations from 22
FRM monitors. We chose 24-h average PM2.5 concentration as
the dependant variable of our models because it is the national
ambient air quality standard for PM2.5 and there are five times
more FRM monitors nationwide than the continuous monitors.
Establishing the association between AOT and 24-h PM2.5

concentration is more appropriate for pollution monitoring and
health effect studies. Nonetheless, hourly PM2.5 concentrations
were collected from two continuous monitors in order to study
the impact of PM2.5 temporal variability on model performance.
The spatial distribution of these monitors is shown in Fig. 1.

2.3. Meteorological data

The meteorological fields used in the current analysis are
generated by the Rapid Update Cycle (RUC) model. The RUC
model is a high-frequency operational weather forecast and data

http://eosweb.larc.nasa.gov
http://eosweb.larc.nasa.gov
http://delenn.gsfc.nasa.gov/~imswww/pub/imswelcome
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http://www.epa.gov/ttn/airs/airsaqs


Fig. 2. Correlogram of 24-h PM2.5 concentrations measured at six monitors with
daily sampling schedules.
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assimilation system developed by the Earth System Research
Laboratory, RUC development group at NOAA (Benjamin et al.,
2004a,b). RUC data are archived at the Atmospheric Radiation
Measurement (ARM) Program Climate Research Facility Data
Archive (http://www.archive.arm.gov/). The third generation
of the RUC model (RUC20), which covers the year 2003,
integrates observations from surface reporting stations and
buoys, rawinsondes and special dropwinsondes, wind profilers,
commercial aircraft, and satellites into a numerical forecast
system that makes short-term weather forecasts at 1-h frequency.
The 1-h frequency of the RUC model enabled us to compute
meteorological parameters including the boundary layer mixing
height (PBL), surface wind speed and wind direction at 10 m
above the ground, mean lower-troposphere relative humidity
(RH) (from surface to approximately 820 hPa), and surface air
temperature at 2 m above the ground between 10 am and noon
corresponding to the MISR/MODIS overpass time. The original
spatial resolution of RUC20 outputs is 20 km. For the
convenience of data storage and computational expediency, we
downloaded the 40 km resolution RUC20 meteorological
parameters averaged from the original 20 km resolution outputs.
Given the flat terrain in our study region, we do not expect any
substantial loss of information due to this spatial averaging.

2.4. Data integration

In order to combine the RUC and satellite data, we averaged
hourly values of the RUC20meteorological parameters including
PBL, surface wind speed and direction, surface air temperature,
and relative humidity between 10 am and noon local time. The
EPA PM2.5 concentrations were then matched with the averaged
RUC meteorological parameters from the RUC grid cell within
which the EPA monitor falls. The global validation of MISR
AOT against observations from the Aerosol Robotic Network
(AERONET) used the average of 3×3 17.6 km-MISR pixels
centered at each AERONETsite (∼26–35 km radius), along with
the central pixel alone, to account for the different sampling
methods of MISR AOT (instantaneous measurements) and
AERONET AOT (average of a 2-h window centered on the
MISR overpass time) (Kahn et al., 2005). For the same reason,
the global validation of MODIS AOT over land against
AERONET took the average of 5×5 10 km-MODIS pixels
centered at each AERONETsite (∼25–30 km radius) (Chu et al.,
2002). Since the current analysis is similar to these validation
studies in that regional measurements are matched with point
measurements, we applied a 30 km search radius around each
EPA monitor for averaging both MISR and MODIS AOT pixels.
Depending on where an EPA monitor is located, this search
radius covers the center coordinates of 8 to 12 MISR pixels or 27
to 32 MODIS pixels. Applying identical search radii to both
MISR andMODIS aerosol data facilitates the comparison of data
from the two sensors. All MISR or MODIS AOT pixels that fall
within the search radius around the EPA monitor were collected.
For each day with a PM2.5 concentration measurement, we
calculated the mean and standard deviation of MISR andMODIS
AOT. To avoid determining the AOT value from a single pixel,
we required that there be at least two validMISR orMODISAOT
measurements per day within each search radius. In addition, to
reduce the likelihood of including spurious AOT pixels in the
analysis, we removed the MISR and MODIS AOT data records
whose coefficient of variation (standard deviation divided by
mean AOT) are greater than 0.5. On average, there are 6 MISR
AOT measurements and 13 valid MODIS AOT measurements in
each search radius on each day. Finally, we matched both the
MISR andMODIS AOT data with the EPA PM2.5 concentrations
and the time-averaged RUC20 meteorological parameters by
date. We refer to these two final datasets as the MISR dataset
(sample size=359) and the MODIS dataset (sample size=1779)
hereinafter.

3. Methods

Since the MISR spherical particle fractions have not been
fully validated and the MODIS fine mode fractions are currently
qualitative, we used the original MISR andMODIS AOT values
to develop our general linear models and later examined the
impact of using the partial AOT values in a subsequent
regression analysis. The average temporal spacing between
two consecutive matched EPA-MISR observations is 10 days or
longer. The average temporal spacing between two consecutive
matched EPA-MODIS observations is three days at the monitors
with a daily sampling schedule and longer at the monitors
implementing every three or six day sampling schedules.
Autocorrelation coefficients calculated at each of the six
monitors with daily sampling schedules drop below 0.2 for a
lag of three days or longer (Fig. 2). Therefore, we conclude that
the autocorrelation among observations at each monitor is
negligible, and the persistence time scale for the aerosol events
in the St. Louis area is likely no greater than two days.

We built a general linear regression model (GLM) using
matched RUC meteorological parameters and either MISR or
MODIS AOT values as predictors of daily PM2.5 concentration:

½PM2:5� ¼ eb0þb1ðTEMPÞþb2ðDIRÞþb3ðNONSPRINGÞ �WINDb4

� PBLb5 � AOTb6þb7�NONSPRING ð1Þ
The dependent variable, [PM2.5], represents the 24-h PM2.5

concentration measured at the EPA monitors. The predictor
variables include surface air temperature (TEMP), surface wind
speed (WIND), mixing height (PBL), either MISR or MODIS

http://www.archive.arm.gov/


Fig. 3. Boxplots showing the distribution (5th, 10th, 25th, median, 75th, 90th,
and 95th percentiles) of PM2.5 concentrations, mixing height (PBL), surface
wind speed (WIND), and surface air temperature (TEMP). The means values are
shown as the thick solid line in the plots.
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AOT (AOT), and two categorical variables: wind direction
indicator (DIR), and seasonal indicator (NONSPRING). Based
on our preliminary analysis and due to the relatively small
sample size of the MISR dataset, seasons are clustered into a
dichotomous variable, i.e., NONSPRING=0 for spring season,
and NONSPRING=1 otherwise. MODIS data exhibits a similar
seasonal pattern so we define the seasonal indicator in the
MODIS dataset as we do in the MISR dataset, which also
assures consistency for model comparison. We also allow the
association of MISR or MODIS AOTwith PM2.5 concentration
to be modified by the seasonal indicator NONSPRING. In
Eq. (1), AOT, PBL, and WIND are assumed to have power law
functional forms to account for their nonlinear relationships
with PM2.5 concentration. TEMP takes an exponential form so
that the impact of temperature fluctuation (both positive and
negative) on the association between PM2.5 concentration and
AOT could be modeled. For easier interpretation of the
regression coefficients, we center TEMP by subtracting its
annual mean. Since WIND and PBL must be positive, we center
these two variables by dividing them by their respective annual
means. The difference in the annual mean values between the
MISR dataset and the MODIS dataset is less than 5% for TEMP
and WIND, and 8% for PBL. The description of these predictor
variables is summarized in Table 1. To account for the particle
size growth with increased RH, we derived nonlinear light
scattering growth curves (results not shown) using data from
Day andMalm (2001) and Day et al. (2000) to modify MISR and
MODIS AOT values. However, this process did not improve
model performance or change regression coefficients signifi-
cantly. As a result, RH was not included in the final model.

Taking log on both sides gives the linear form of Eq. (1):

ln½PM2:5� ¼ b0 þ b1ðTEMPÞ þ b2ðDIRÞ
þ b3ðNONSPRINGÞ þ b4lnðWINDÞ
þ b5lnðPBLÞ þ b6lnðAOTÞ þ b7
� NONSPRING� lnðAOTÞ ð2Þ

The log-transformations reduce the skewness in the data
distribution of PM2.5, AOT, PBL, and WIND, consequently
Table 1
Definitions of predictor variables used in Eqs. (1) and (2)

Name Property Unit Description

AOT Continuous Dimensionless MISR or MODIS total AOT
TEMP Continuous Dimensionless Surface level air temperature

measured at 2 m above the
ground centered by removing the
sample mean.

WIND Continuous m/s Surface wind speed measured at
10 m above the ground centered
by subtracting the sample mean.

PBL Continuous km Mixing height centered by being
divided by the sample mean.

DIR Categorical Wind direction (blowing from).
Level=East, South, West,
and North

NONSPRING Categorical Level=1 if sampling date is
between March and May, =0
otherwise
increasing the accuracy of the estimated regression coefficients
and their standard errors. β1 through β6 are regression
coefficients for predictor variables TEMP, DIR, NONSPRING,
ln(WIND), ln(PBL) and ln(AOT), respectively. Since we in-
clude an interaction term between ln(AOT) andNONSPRING in
order to model the changing association between PM2.5

concentration and AOT by season, model intercept is β0 is in
springtime, and (β0+β3) during the rest of the year. In addition,
the regression coefficient for ln(AOT) is β6 in springtime, and
(β6+β7) during the rest of the year. For Eq. (1) to be valid, we
assume that the air within the boundary layer is well mixed, and
the vertical distribution of particles above the boundary layer is
relatively smooth. This assumption is commonly satisfied over
land during daytime when there is sufficient surface heating
(Holton, 2004). Since there are no AOT retrievals during very
cloudy days and our study region is not close any large water
bodies, the conditions encountered in the current analysis when
this assumption tends to break down is expected to be rare. The
various meteorological parameters and the seasonal variable
included in the models are all considered as indicators of the
change of particle vertical profile and composition. When there
are discontinuous particle intrusion layers above the boundary
layer, the association between ground-level PM2.5 concentration
and satellite-derived, total-column AOTwill be weakened and a
measured or model-simulated particle vertical profile is required
to separate the AOT proportion in the boundary layer (Liu et al.,
2004a).

We evaluated model performance by comparing predicted
PM2.5 concentrations with EPA observations before and after
reversing the log transformation. All statistical analyses were
conducted using the SAS system (SAS Institute Inc., Cary, NC).

4. Results and discussion

4.1. Summary statistics of data

Summary statistics of PM2.5 concentrations as well as the
RUC20 meteorological parameters in their original values (i.e.,
before centering) in the MISR and MODIS datasets are
presented in Fig. 3. Overall, the mean and median values of
PM2.5, PBL, and TEMP happen to be slightly higher in the
MODIS dataset than in the MISR dataset. The mean and median



Table 2
Summary statistics of MISR and MODIS total AOT and partial AOT data

Total AOT Partial AOT

MISR MODIS MISR MODIS

N 359 1779 359 1779
Mean 0.14 0.31 0.13 0.30
Min 0.03 0.02 0.02 0.01
5th percentile 0.03 0.08 0.03 0.08
10th percentile 0.04 0.11 0.03 0.10
25th percentile 0.06 0.18 0.06 0.17
Median 0.10 0.30 0.10 0.28
75th percentile 0.15 0.42 0.15 0.41
90th percentile 0.29 0.55 0.26 0.55
95th percentile 0.35 0.61 0.35 0.61
Max 1.02 1.02 1.00 1.02
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value of WIND in the two datasets are very similar. These
variables also have comparable ranges in both datasets.
However, MODIS AOT is consistently higher than MISR
AOT throughout the year (Table 2). Remer et al. (2005) reported
a 53–54% positive bias in MODIS AOT over the U.S. when
compared with AERONET AOT measurements which are
generally considered to be very accurate (Smirnov, 2000).
Abdou et al. (2005) observed a similar discrepancy between
MODIS AOT over land, and MISR and AERONET AOT. This
bias could be manifested in our dataset and may explain the
observed difference between MISR and MODIS AOT. As
shown in Table 2, the partial AOT values (spherical fraction for
MISR and fine-mode fraction for MODIS) have distributions
very similar to their respective total AOT values. This indicates
that in our dataset coarse mode particles contribute little to the
total AOT retrieved by either MISR or MODIS.

4.2. Comparison of the overall model performance

The MISR and MODIS datasets are fit to Eq. (2) separately.
Hereinafter, we call the model expressed in Eq. (2) separately
Table 3
Estimated regression coefficients of the MISR model (sample size N=359) and MO

Parameter Total MISR AOT (R2=0.62)

Estimate Standard error CI facto

Intercept
Spring 3.12⁎⁎⁎ 0.12 22.8
Non-Spring 3.71⁎⁎⁎ 0.19 40.9

ln(AOT)
Spring 0.19⁎⁎⁎ 0.05 AOT0.19

Non-Spring 0.44⁎⁎⁎ 0.08 AOT0.44

ln(PBL) 0.01 0.04 PBL0.01

ln(WIND) −0.33⁎⁎⁎ 0.04 WIND−

TEMP −0.005⁎ 0.002 e−0.005 ×

Wind direction
From East −0.04 0.06 0.94
From North −0.02 0.05 0.98
From South 0.44⁎⁎⁎ 0.05 1.55
From West a 0.00 1.00

⁎ Significant at the α=0.05 level.
⁎⁎ Significant at the α=0.01 level.
⁎⁎⁎ Significant at the α=0.001 level.

a Reference level in the categorical predictor.
for each satellite sensor: the MISR model when MISR AOT is a
predictor and the MODIS model when MODIS AOT is a
predictor. Overall, the MISR model explains more variability in
daily PM2.5 concentrations (R

2 =0.62) than the MODIS model
(R2 =0.51) (Table 3). All the predictors in the MODIS model are
highly significant at the α=0.001 level, whereas ln(PBL) in the
MISR model is not significant at the α=0.05 level. Standard
diagnostics for linear regression models, such as the jackknife
residuals and the Cook's Distances do not indicate any outliers
or substantial fluctuation of variances in either model. The
MISR model predicts an annual mean PM2.5 concentration of
12.3 μg/m3, approximately 5% lower than the annual mean of
EPA observations (12.9 μg/m3). The MODIS model predicts an
annual mean PM2.5 concentration of 13.3 μg/m

3, approximately
7% lower than the annual mean of EPA observations (14.2 μg/
m3). After we reverse the log transformation by taking the
exponential of the fitted ln[PM2.5] values and compared with
EPA observations, the root-mean-square error (RMSE) is
4.5 μg/m3 for the MISR model, and 5.6 μg/m3 for the
MODIS model. Given the mean EPA PM2.5 concentrations, we
calculate the relative error (RMSE divided by mean PM2.5

concentration) to be 35% for the MISR model and 39% for the
MODIS model.

Regression analysis using the fitted and the observed log-
transformed PM2.5 concentrations (ln[PM2.5] in Eq. (2)) shows
an approximately 2% underestimation for both the MISR model
and the MODIS model, i.e., fitted ln[PM2.5]=0.98×observed ln
[PM2.5]. After reversing the log transformation, we observe that
the MISR model underpredicts PM2.5 concentrations by
approximately 12% and the MODIS model underpredicts
PM2.5 concentrations by approximately 18% over the data
range (Fig. 4). Underestimation occurs primarily at higher
PM2.5 concentrations in both models. This phenomenon may be
attributed to the flattening effect of log transforming both the
dependent (PM2.5) and some of the predictor variables.
Although log-transformation corrects the non-normality of
DIS model (sample size N=1779) using total AOT

Total MODIS AOT (R2=0.51)

r Estimate Standard error CI factor

2.48⁎⁎⁎ 0.06 12.1
2.90⁎⁎⁎ 0.08 17.6

0.20⁎⁎⁎ 0.04 AOT0.20

0.45⁎⁎⁎ 0.06 AOT0.45

−0.14⁎⁎⁎ 0.02 PBL−0.14
0.33 −0.17⁎⁎⁎ 0.02 WIND−0.17

TEMP 0.005⁎⁎⁎ 0.001 e0.005×TEMP

0.14⁎⁎⁎ 0.04 1.15
0.11⁎⁎⁎ 0.03 1.12
0.44⁎⁎⁎ 0.02 1.55
0.00 1.00



Fig. 4. Scatterplots of fitted PM2.5 concentrations obtained from the MISR and
MODIS general linear models vs. EPA observations. Solid line represents
simple linear regression with intercept excluded. Dashed line represents 1:1
reference.
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PM2.5 data and gives more accurate standard errors of the
regression coefficients, it constrains the relation between PM2.5

concentrations and each of these predictors to an exponential form.
Reversing the log-transformation tends to yield a flatter regression
slope, resulting underestimation at higher concentrations.

The overall model performance in the current analysis is
higher than similar previous studies. Stepwise regression
analysis indicates that MISR AOT explains approximately
35% of the variability in 24-h PM2.5 concentrations, as
compared to 18% in Liu et al. (2005). Factors that might
contribute to this improvement include better MISR data quality
(version 15 used in the current analysis vs. version 12 in Liu
et al. (2005)), and the potentially simpler particle vertical
profiles encountered in our study region as compared to the
coastal regions in Liu et al. (2005). MODIS AOT explains
approximately 27% of the variability in 24-h PM2.5 concentra-
tions, which is comparable with the correlation coefficients
between 0.45 and 0.56 previously reported in St. Louis (Engel-
Cox et al., 2004). The correlation coefficients between the fitted
and the observed PM2.5 concentrations are 0.78 and 0.69 for the
MISR and the MODIS datasets, respectively, which make the
current models better tools in quantitatively estimating PM2.5

exposure as compared to simple linear models using AOT as the
only predictor.

It should be noted that EPA measurements of 24-h PM2.5

concentrations are assumed to be accurate when we analyze the
overall model performance. In fact, the absorption or desorption
of semi-volatile compounds such as nitrates and carbonaceous
species can sometimes introduce substantial positive or negative
biases to filter based PM2.5 mass measurements. This
uncertainty may account for part of the unexplained variability.
However, it is impossible to estimate or correct these potential
biases caused by the semi-volatile species in our PM2.5

concentration data so we cannot explore this matter further.

4.3. Comparison of the regression coefficients of predictor
variables

We interpret the relationship between PM2.5 concentration
and AOT as well as the influences of the other predictors in the
models on this relationship primarily using concentration
impact factors (CI factors) (Table 3). The CI factor of a log-
transformed continuous variable is this variable to the power of
its regression coefficient. For example, PBL has a regression
coefficient of −0.14 in the MODIS model. Its corresponding CI
factor is PBL−0.14, which represents the impact of centered
mixing height on the association between PM2.5 concentration
and MODIS AOT. The CI factor of the non log-transformed
continuous variable, i.e. TEMP, is the exponential of the
regression coefficient of TEMP multiplied by the variable. For
example, TEMP has a regression coefficient of −0.005 in the
MISR model. Its corresponding CI factor is e−0.005 ×TEMP,
which represents the impact of surface temperature variation
(around the annual mean) on the association between PM2.5

concentration and MISR AOT. Since the categorical variable
DIR has four levels, each of the four levels has a CI factor,
calculated as the exponential of the regression coefficient for
each level. Since westerly wind was chosen as the reference
direction, it always has a regression coefficient of zero and a CI
factor of one. The other three CI factors can be interpreted as the
impact of different wind directions on the fitted PM2.5

concentrations as compared to the reference level.

4.3.1. Model intercepts
The CI factor of the model intercept is calculated as the

exponential of the estimated intercept. As mentioned previous-
ly, we allow the association between PM2.5 concentration and
AOT to vary by season. As a result, the CI factor of the MISR
model intercept is 22.8 μg/m3 in springtime and 40.9 μg/m3

during the rest of the year. The CI factor of the MODIS model
intercept is significantly smaller (12.1 μg/m3 in springtime and
17.6 μg/m3 during the rest of the year). Since the meteorological
predictors PBL, WIND and TEMP are all centered, these CI
factors have clear physical interpretations. For example, the
intercept CI factor of 22.8 μg/m3 in the MISR model means that
in springtime, when mixing height, wind speed, and surface
temperature are at their annual mean levels and wind blows
from the west, a MISR AOT value of 1.0 corresponds to the
ground-level PM2.5 concentration of 22.8 μg/m3. Similarly, the
intercept CI factor of 12.1 μg/m3 in the MODIS model means
that in springtime, when mixing height, wind speed, and surface
temperature are at their annual mean levels and wind blows
from the west, a MODIS AOT value of 1.0 corresponds to
ground PM2.5 concentrations of 12.1 μg/m3. This finding
suggests that under similar conditions, MISR AOT values
predict significantly higher PM2.5 concentrations than MODIS
AOT values in our study region.
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4.3.2. MISR/MODIS AOT and seasonal variation
Considering the standard errors of the regression coefficients,

the CI factors of MODIS AOT in springtime (AOT0.20) and non-
spring seasons (AOT0.45) are surprisingly comparable with those
of MISR AOT (AOT0.19 in springtime, AOT0.44 in non-spring
seasons). This suggests that both MISR and MODIS AOT values
have a similar relationship with PM2.5 concentrations in the St.
Louis area. However, the lower intercept of the MODIS model
suggests that MODIS AOT predicts significantly lower PM2.5

concentrations than the same level of MISR AOT. It has been
previously shown that MISR and MODIS AOT are well
correlated despite MODIS AOT being consistently higher over
land (Abdou et al., 2005). Comparison studies with AERONET
observations indicate that the uncertainties in both MISR and
MODIS AOT are proportional to the magnitude of AOT values
(Kahn et al., 2005; Liu et al., 2004b; Remer et al., 2005). It is
likely that MODIS overestimates AOT by a consistent proportion
in our study region. If a true AOT value represents a certain PM2.5

concentration level, the same AOT value retrieved by MODIS
should represent a smaller PM2.5 concentration due to its positive
bias. Given the multiplicative form of our model, the consistent
positive bias in MODIS AOT could be manifested by the lower
model intercepts of the MODIS model. It should be noted that
despite the possible bias in MODIS AOT, the MISR and MODIS
models have overall comparable predictability of ground-level
PM2.5 concentrations with the MISR model having a slightly
higher R2 and thus a better fit. As we mentioned in the intro-
duction, MISR and MODIS complement each other due to their
different instrument designs and aerosol retrieval algorithms.
MODIS aerosol retrieval over land is able to achieve repeat co-
verage at mid-latitude in 1–2 days owing to its wide swath.
Although MISR AOT appeared more accurate, it is only able to
achieve repeat coverage at mid latitudes in 5–7 days. The smaller
MISR data sample size, which probably causes the instability of
some predicators in theMISRmodel shown later in this paper, is a
direct reflection of this difference in spatial coverage. The com-
parable regression coefficients give hope that the integration of
MISR and MODIS AOT data will benefit from the better spatial
coverage of MODIS and higher sensitivity of MISR.

Although AOT is positively associated with PM2.5 concen-
tration throughout the year, the AOT CI factors are significantly
greater during non-spring seasons than in springtime. This
means that for the same AOT values, MISR and MODIS both
predict larger PM2.5 concentrations during non-spring seasons
than in springtime. In our previous analysis, we used season as a
4-level categorical variable and found the CI factor for
springtime is significantly lower than for the rest of the year
over eastern U.S. states (Liu et al., 2005), similar to the finding
in this analysis. It has been shown by both modeling analyses
and observations that there is substantial long-range transport of
dust and pollution aerosols in the free troposphere from east and
southeast Asia in springtime (Prospero et al., 2002; VanCuren &
Cahill, 2002). In addition, deep convective systems in the spring
over the central and south western U.S. can also increase
vertical mixing and transport boundary layer pollutants to the
free troposphere (Talbot et al., 1998). Both phenomena tend to
increase the proportion of particles in the free troposphere.
Consequently, the same AOT values would correspond to lower
ground level PM2.5 concentrations in springtime than during the
rest of the year.

4.3.3. Meteorological conditions
Surface level wind speed (WIND) is a highly significant

predictor in both models, and the negative sign of its regression
coefficient in both models shows that MISR or MODIS AOT
predicts lower PM2.5 concentrations at higher wind speed
(Table 3). Preliminary analysis of the RUC20 data showed that
surface level wind speed is strongly correlated with the average
wind speed in the lower troposphere. Therefore, the negative
sign of its regression coefficient may be attributed to the fact
that greater turbulence caused by higher wind speed enhances
vertical mixing. Surface wind direction (DIR) is also highly
significant in both models. Each wind direction has a different
impact on the MODIS model intercept from the reference wind
direction (westerly winds) whereas only one wind direction
(southerly winds) has a significantly different impact on the
MISR model intercept from the reference direction. In both
models, the corresponding PM2.5 concentrations are approxi-
mately 30%–50% higher when wind blows from the south than
when it blows from other directions. In 2002, the EPA St. Louis
PM Supersite observed dramatically increased SO2 concentra-
tions when the winds were out of the southwest (Douglas
Dockery, personal communication). Because SO2 is the
precursor of sulfate particles and an important indicator of
large combustion source emissions, their observations together
with our analysis suggest that perhaps a larger proportion of
particles in the air stay near the surface when the wind blows
from the south. Since there are no major point sources of PM2.5

or large communities in the southern part of our domain, the
elevated PM2.5 level related to southerly winds might be caused
by the low-level jet in lower atmosphere that carries polluted air
from Texas towards the Great Lakes (Court, 1974).

Surface air temperature (TEMP) is a significant predictor in
both models although its impact on the predicted PM2.5

concentrations is relatively small. Using the maximum and
minimum TEMP values, we calculate the CI factors to be
between 0.92 and 1.13 for the MISR model, and between 0.88
and 1.07 for the MODIS model. The signs of the regression
coefficients differ in the two models (Table 3). Higher air
temperature accelerates the generation of secondary particles
near the surface, causing a higher proportion of particle mass in
the mixed layer, which would explain the positive regression
coefficient of TEMP in the MODIS model. Analysis of the
PM2.5 speciation data collected in the study region (results not
shown) suggests that there is a positive correlation between the
ratio of sulfate proportion of PM2.5 mass to organic carbon (OC)
proportion of PM2.5 mass and air temperature. Since sulfate
particles tend to have larger extinction coefficients than OC
particles (Chin et al., 2002), the same AOT values would
correspond to less total PM2.5 mass when there are more sulfate
particles in the air. This correlation might to some extent be
linked to the negative regression coefficient of TEMP in the
MISR model. More importantly, model stability analysis, which
will be presented later in this paper, shows that TEMP becomes
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very unstable at smaller sample sizes. This suggests that we
could have observed a negative regression coefficient of TEMP
in the MISR model by chance.

Mixing height (PBL) has a significant impact on the asso-
ciation between PM2.5 concentration and AOT in the MODIS
model. Its CI factor (PBL−0.14) means that for the same number of
particles trapped in the boundary layer, a lower mixing height
causes a higher ground level PM2.5 concentration, which is what
we expected to see. The regression coefficient of ln(PBL) is not
statistically significant in the MISR model. This result differs
from our previous analysis using a larger dataset covering the
eastern U.S. (Liu et al., 2005), where we found a strong and
significant impact of PBL on the association between PM2.5

concentration and MISR AOT. It might be related to the issue of
predictor stability, which we will discuss in Section 4.4.2.

Surface level wind speed and direction are important indicators
of horizontal movement and mixing of air masses. Surface air
temperature and boundary layer height are closely related to the
convective mixing in lower atmosphere and the generation of
secondary particles. Their significance as predictors in the current
models reflects their ability tomodify and enhance the association
between AOT and PM2.5 concentrations. Stepwise regression
analysis indicates that together the meteorological parameters
explain approximately 23% of the variability in PM2.5 concentra-
tions, as compared to slightly over 15% reported in Liu et al.
(2005). Factors causing the better predictability might include the
choice of a flat inland domain and the higher spatial resolution of
the RUC20 data.

4.4. Other factors affecting model performance

In our previous work, we suggested that the performance of a
statistical model linking AOT and PM2.5 concentration could be
improved in the followingways: 1) information about particle size
distribution and composition, 2) information about particle
vertical distribution, and 3) the accuracy, resolution and coverage
Table 4
Estimated regression coefficients of the MISR model (sample size N=359) and MO

Parameter MISR partial AOT (R2=0.61)

Estimate Standard error CI facto

Intercept
Spring 3.16⁎ 0.12 23.6
Non-Spring 3.74⁎ 0.19 42.1

ln(AOT)
Spring 0.20⁎ 0.05 AOT0.20

Non-Spring 0.44⁎ 0.08 AOT0.44

ln(PBL) 0.006 0.03 PBL0.00

ln(WIND) −0.33⁎ 0.04 WIND−

TEMP −0.004+ 0.002 e−0.004 ×

Wind direction
From East −0.060 0.07 0.94
From North −0.005 0.05 0.99
From South 0.42⁎ 0.05 1.52
From West a 0.00 1.00

⁎ Significant at the α=0.001 level.
+p value=0.068.

++p value=0.061.
a Reference level in the categorical predictor.
of input data (Liu et al., 2005). In the following sections, we
discuss the potential influence of particle size distribution, data
sample size, and the temporal resolution of PM2.5 concentration.

4.4.1. Regression analysis using partial AOT
Although PM2.5 concentration measures fine-mode particles,

AOT represents the light scattering capability of all particles in
the atmospheric column. When the contribution of coarse
particles to AOT is large, the association between AOT and
PM2.5 concentrations could be weakened. To evaluate the newly
developed particle mode indicators in the MISR and MODIS
aerosol data, we replace total MISR andMODIS AOTwith their
respective partial AOT values and fit the models again
(Table 4). The model RMSE and relative errors remain the
same, indicating no improvement in model performance. The
regression coefficients of the intercepts and ln(AOT) increase
slightly in both models likely because the partial AOT values
are slightly smaller than the total AOT values. None of the
regression coefficients are significantly different from those in
the original models except TEMP, which is only marginally
significant at the α=0.05 level in both models. It has been
shown that MISR total AOT is sensitive to particles with
diameters ranging from about 0.05 to 2.0 μm including
accumulation-mode dust particles (Kahn et al., 1998), which
roughly corresponds to the size range of PM2.5 Examining the
MISR and MODIS datasets reveals that the difference between
the total and partial AOT is less than 5% for approximately 80%
of the data in each dataset. For only 5% of the data, the
difference is greater than 25%. This small difference between
total and partial AOT seen in our study region explains why
there is little impact of using partial AOT for predicting PM2.5

concentrations.

4.4.2. Stability of predictor variables
The number of predictors that can be included in a regression

model and their robustness depend on the data sample size.
DIS model (sample size N=1779) using partial AOT values

MODIS partial AOT (R2=0.52)

r Estimate Standard error CI factor

2.48⁎ 0.05 12.2
2.94⁎ 0.08 18.5

0.20⁎ 0.04 AOT0.20

0.47⁎ 0.06 AOT0.47
6 −0.14⁎ 0.02 PBL−0.14
0.33 −0.16⁎ 0.02 WIND−0.16

TEMP 0.002++ 0.001 e0.002 ×TEMP

0.12⁎ 0.04 1.13
0.10⁎ 0.03 1.11
0.43⁎ 0.02 1.54
0.00 1.00



Table 5
Percentages of 1000 bootstrap sample runs in which each predictor is significant
at the α=0.05 level at various sample sizes

Predictor % significant

N=360 N=500 N=800 N=1400

ln(AOT) 99.9 100.0 100.0 100
NONSPRING ×ln(AOT) 77.0 86.7 97.5 99.9
ln(PBL) 92.6 98.2 99.9 100.0
ln(WIND) 98.6 99.8 100.0 100.0
Wind direction 100.0 100.0 100.0 100.0
TEMP 44.3 57.5 71.7 91.5
NONSPRING 91.2 97.7 99.8 100.0
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Certain predictors can become unstable as the sample size gets
smaller. Our concern is that some regression coefficients in the
MISR model are unstable due to the relatively small size of the
MISR dataset. We apply bootstrap techniques on the larger
MODIS dataset with various bootstrap sample sizes to test the
stability of the predictor variables used in Eq. (2). This analysis
also serves as a performance test of the MODIS model when
different datasets are used in the regression. The MODIS dataset
is randomly sampled 1000 times at each bootstrap sample size
and each random sample is used to fit the MODIS model. The
percentages of these 1000 runs in which a predictor is
significant are shown in Table 5. The bootstrap model runs
provide strong evidence that, except for surface air temperature
(TEMP), all the predictors and thus the overall model structure,
are stable (greater than 95% chance of being significant) when
the data sample has at least 800 data points. When the sample
size is reduced to 360 (the size of the MISR dataset), TEMP
only has a 44.5% chance of being a significant predictor. Given
the general similarity between the MISR and the MODIS
datasets, the bootstrap results suggest that the significance of
TEMP in the MISR model with total AOT may not be robust.

Table 5 also suggests that ln(PBL) has a high probability
(92.6%) of being a significant predictor at a sample size of 360.
Analysis of RUC20 data shows an unusually strong correlation
between log-transformed wind speed and log-transformed PBL
in the MISR dataset in springtime (approximately 30% of the
MISR dataset) as compared to the modest correlation in the
MODIS dataset. This suggests that the PBL data in the MISR
Table 6
Regression coefficients of simplified MODIS model at two continuous monitors

Parameter Monitor in MO (N=151)

Hourly PM2.5 (R
2=0.41) Daily PM2.5 (R

2=0.45)

Estimate Standard error Estimate Standard

Intercept 3.25⁎⁎⁎ 0.12 3.20⁎⁎⁎ 0.09
ln(AOTMODIS) 0.56⁎⁎⁎ 0.07 0.42⁎⁎⁎ 0.05
ln(WIND) −0.30⁎⁎⁎ 0.07 −0.25⁎⁎⁎ 0.05
Wind direction
From East −0.15 0.15 −0.051 0.11
From North −0.10 0.11 −0.036 0.08
From South 0.31⁎⁎⁎ 0.10 0.31⁎⁎⁎ 0.08
From West a 0.00 0.00

⁎⁎⁎ Significant at the α=0.001 level.
a Reference level in the categorical predictor.
dataset might behave similarly to that 7.4% of the 1000
bootstrap samples of the MODIS dataset in which ln(PBL) is
not a significant predictor. A larger dataset with multiple years
of MISR data might be needed to provide the statistical power to
make ln(PBL) a significant predictor.

4.4.3. Temporal resolution of PM2.5 data
Both MISR and MODIS AOT are instantaneous measure-

ments of particle abundance whereas EPA 24-h PM2.5 concen-
trations are integrated measures over a day. Diurnal variation of
PM2.5 concentrations is likely to have a negative impact on the
association between the two variables. We averaged PM2.5

concentrations between 10 am and 12 am collected from two
non-filter based continuous monitors (one in Missouri, the other
in Illinois) to represent the mean hourly PM2.5 concentrations in
the satellite time window. To avoid data correlation between the
twomonitors, we matched the hourly PM2.5 concentrations from
each monitor separately with MODIS AOT. MISR data were not
used because of its small size after matching. Based on the
variable stability analysis, we developed a simplified MODIS
model using either hourly or 24-h PM2.5 concentrations as the
dependent variable, MODIS AOT as the primary predictor, and
the most stable meteorological parameters at this sample size
(PBL, WIND, and DIR) as secondary predictors (Eq. (3)).

ln½PM2:5� ¼ b0 þ b1ðDIRÞ þ b2lnðWINDÞ þ b3lnðPBLÞ
þ b4lnðAOTMODISÞ ð3Þ

Regression coefficients of ln(AOTMODIS) and ln(WIND) are
highly significant while only one level of DIR (from south) is
significantly different from the reference wind direction (from
west) (Table 6). The intercept, regression coefficients of ln
(WIND) and DIR in the four models are not significantly
different from each other due to wide confidence intervals. The
regression coefficient of ln(AOTMODIS) is larger when hourly
PM2.5 concentration is the dependent variable. Because Eq. (3)
assumes a power law functional form between PM2.5 concen-
tration and AOT and the maximum AOT values observed at
these two sites are less than 1.0, this larger regression coefficient
can be explained by the fact that hourly PM2.5 concentrations
measured between 10 am and 12 pm are lower than daily
Monitor in IL (N=147)

Hourly PM2.5 (R
2=0.50) Daily PM2.5 (R

2=0.55)

error Estimate Standard error Estimate Standard error

3.24⁎⁎⁎ 0.12 3.07⁎⁎⁎ 0.08
0.69⁎⁎⁎ 0.07 0.45⁎⁎⁎ 0.05

−0.24⁎⁎⁎ 0.06 −0.24⁎⁎⁎ 0.04

0.034 0.15 0.16 0.10
−0.018 0.11 0.058 0.08
0.45⁎⁎⁎ 0.10 0.45⁎⁎⁎ 0.07
0.00 0.00
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averages at these two sites. The slightly lower R2 values in the
models where hourly PM2.5 concentration is the dependent
variable is probably due to the higher measurement errors of
continuous monitors. Overall, improving the temporal resolu-
tion of PM2.5 concentration do not seem to improve the model
performance in the current analysis.

5. Conclusions

We developed two general linear regression models to
compare the ability of MISR and MODIS AOT to predict
ground-level PM2.5 concentrations in the St. Louis area in 2003.
Using a few meteorological parameters including wind speed,
wind direction, mixing height (PBL), and surface air temper-
ature as covariates in the models, the MISR and MODIS models
explained 62% and 51% of the variation in daily PM2.5

concentrations, respectively. Overall, the MISR model under-
predicts PM2.5 concentrations by approximately 12%, whereas
the MODIS model underpredicts PM2.5 concentrations by
approximately 18%. In both models, the underestimation occurs
at higher PM2.5 concentrations. Analysis of the predictor CI
factors showed that AOT would predict higher PM2.5

concentrations during non-spring seasons than in springtime.
Both AOT and meteorological parameters explain greater
variability in PM2.5 concentrations, indicating overall better
model performance, compared to our previous results in the
coastal regions of eastern US. Despite the reported positive bias
in MODIS AOT, the predictability and the regression
coefficients of the two models are comparable, suggesting the
possibility of integrating the two datasets to take advantage of
the better accuracy of MISR and broader spatial coverage of
MODIS. We also evaluated a few factors that may influence
model performance. The newly developed particle size/shape
indicators in the MISR and MODIS aerosol data do not seem to
improve model performance because they only marginally
modified the total AOT values in the study region. Regression
analysis using bootstrapped samples of the MODIS dataset
indicates that AOT, wind speed, wind direction and mixing
height remain stable predictors of PM2.5 concentrations even
when only 20% of original MODIS data are used in the model
fitting. Although hourly PM2.5 concentration measured in the
satellite time window corresponds more directly to AOT, using
it as the dependant variable does not seem to improve the model
performance. 24-h PM2.5 concentration would be a more
appropriate dependant variable given its higher accuracy and
broader spatial coverage.

The empirical models developed in this analysis have the
potential weakness of being region-specific, and they require
support of ground measurements. In a previous study, we
utilized simulated particle vertical profiles to develop a simple
physical model which reliably predicts annual mean PM2.5

concentrations (r∼0.8) (Liu et al., 2004a). Although this
approach is transferable and does not need the support of EPA
measurements, the issue of data accuracy at higher temporal and
spatial resolution is likely to limit its application in the
epidemiologic studies mentioned in the introduction. On one
hand, the spatial resolution of global chemistry transport models
(∼150 km in Liu et al., 2004a) are too coarse to show the urban-
scale pollution level contrasts which can be linked to the health
outcomes in the population at risk. On the other hand, fine
resolution (below 20 km) simulation of daily particle vertical
distributions still needs extensive validation and the current
results are less reliable. In the context of the long-term particle
pollution epidemiologic studies which usually have limited
ground measurements, empirical models such as the ones
presented in this analysis can still be very valuable in filling the
gaps between the monitors.

Since we only collected a year's worth of data, inter-annual
variation of the association was not considered in our models. As
a result, it is possible that the model behavior and regression
coefficients may change when multiple years of data are used in
the model fitting process. Although the multivariate model
presented in the current analysis showed significant advantages
as compared to the simple linear models seen in the literature,
this model form tends to underestimate at high concentrations.
To overcome this flattening effect of log-transformation,
advanced data driven modeling techniques, such as spline
regression, need to be applied. Finally, it has been shown that the
variability of lower tropospheric aerosols over ocean increases
significantly over scales from 20 km to 200 km (Anderson et al.,
2003). The spatial scale of aerosol variability over land is likely
to be substantially smaller due to proximity to emission sources.
Therefore, operational satellite AOT data with a resolution of a
few kilometers, rather than the more coarsely aggregated
standard products currently available, would better capture the
spatial variability of fine particles while controlling for the
uncertainty associated with AOT retrieval.
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