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Optical Remote Sensing of Vegetation:
Modeling, Caveats, and Algorithms
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1. M. Verstraete,tt and D. L. Williams*

The state-of-the-art on radiative transfer modeling in
vegetation canopies and the application of such models
to the interpretation and analysis of remotely sensed
optical data is summarized. Modeling of top-of-the-atmo-
sphere and top-of-the-canopy radiance field is developed
as boundary value problems in radiative transfer. The
parameterization of the constituentfunctions with simple
models and/or empirical data is outlined together with
numerical solution methods and examples of results of
model validation. Caveats in the assignment of signal
characteristics to surface properties are itemized and
discussed with example results. Algorithms to estimate
surface properties from remote observations are classified
as spectral vegetation indices, model inversion, expert
systems, neural networks, and genetic algorithms. Their
applicability is also discussed.

I. INTRODUCTION

The interpretation of remotely sensed reflectance data
and the apportioning of signal characteristics to target
properties requires an understanding of how the various
physical mechanisms interact to produce the measured
signal. For instance, in the application of satellite remote
sensing to vegetation, an understanding of the spectral
response resulting from leaf internal microscopic struc-
ture and the perturbations to this response introduced
by both the macroscopic aggregation of leaves in a
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canopy and the intervening atmosphere is required.
This physical problem may be succinctly posed as a
radiative transfer equation, the solution of which con-
volved with an instrument's response function is the
remote spectral measurement.

In this paper, the state-of-the-art on modeling of
radiation transport in vegetation canopies and the appli-
cation of such models to the interpretation and analysis
of remotely sensed optical data is summarized. We
begin with a statement of the physical problem and its
mathematical description, parameterization and numeri-
cal solution (section II). This is followed by a brief
catalogue of the various distortionary effects inherent
in remote observations (section III). The extraction of
information (namely estimation of vegetation properties)
from remote optical measurements is discussed in the
last section. This paper is not intended to be a review
either of literature or of the various ideas currently in
vogue. Instead, it is aimed with the broader scope of
itemizing and elaborating three issues in the optical
remote sensing of vegetation-modeling, caveats, and
algorithms.

II. THE PHYSICAL PROBLEM

In this section we begin with a brief statement of the
physical problem encountered in the optical remote
sensing of vegetated land surfaces. Forward modeling
of the physical problem is developed as boundary value
problems in radiative transfer. The parameterization
and solution of the resulting equations are discussed
along with results of validation of the models.

Statement of the Physical Problem
The atmosphere is illuminated at the top by monodirec-
tional solar radiation that is absorbed and / or scattered
depending on the composition of the atmosphere and
wavelength of the incident beam. The vegetation canopy
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receives both monodirectional and diffuse radiation (due
to collisions in the atmosphere), which it reflects back
into the atmosphere according to its bidirectional re-
flectance distribution function. The remote measure-
ments are typically the angular and spectral distributions
of radiations exiting the atmosphere. This physical prob-
lem may be succinctly posed as a radiative transfer
equation that describes the interaction of photons in
the atmosphere-vegetation-soil medium, the solution of
which is the remote spectral measurement. In some
instances, the spectral radiance field immediately above
the canopy is measured. The corresponding radiative
transfer problem is also outlined in the following sec-
tions.

Forward Problem Formulation
We consider the problem of sensing a vegetated land
surface through an atmosphere and are concerned pri-
marily with top-of-the-atmosphere (TOA) spectral radi-
ance fields. We shall denote this as the remote sensing
problem, as opposed to the vegetation canopy problem
where both direct sunlight and diffuse skylight are inci-
dent and top-of-the-canopy spectral radiance fields are
of interest.

Remote Sensing Problem
The radiance distribution measured by a sensor of uni-
form spectral response function aboard a satellite can
be simulated as the solution of the following radiative
transfer problem. For illustrative purposes, the atmo-
sphere is assumed to be horizontally homogeneous, of
finite optical depth T, illuminated spatially uniformly
on top (T = 0) by monodirectional solar radiation of inten-
sity incident along Q ( < 0), and bound at the
bottom (r = TA) by a horizontally heterogeneous vegeta-
tion canopy. In the absence of polarization, frequency
shifting interactions and emission, which we assume
throughout this presentation, the steady state monochro-
matic radiance or intensity distribution function I(TP,
2) is given by the boundary value problem

(+ 1)lr,2) = -id (la)
I(O,Q) = Io(Q - Qo)4 ji<0, (lb)

1(rA,jitC) =- ± dQ'Rv7(jtQ (2)| vI(TA7jJQŽ2l
7t 2n

p' < O. > . (IC)

Here co, is the single scattering albedo, P, is the rota-
tionally invariant scattering phase function for photon
scattering from the direction ' into and Rv is
the vegetation canopy bidirectional reflectance factor
(BRF). The unit vector Q(,(p) has an azimuthal angle
V measured anti-clockwise from the positive x-axis that
is directed North, and a polar angle = cos-' u with

respect to the outward normal (opposite to the -axis,
which is directed down into the atmosphere); conse-
quently, u c (0,1) denotes upward directions of photon
travel and vice versa. The operator (Qet) denotes the
directional derivative along Q in (rp) space, with P - x,y.

From a numerical point of view it is preferable
to separate the uncollided from the collided radiation
intensity (Myneni et al., 1990). This we do by letting

lr fQ) j= IS(2 Q) + PI(TQ) (2)

and substituting in Eq. (1) to result in the following:

(A) Uncollided Intensity

(Q V, + )l(rjQ) = 0,

P(OQ) = 1o6(Q - o),

(3a)

(3b)p<0,

I(TApSQ) = - dQ 'Rv(p W' " 04u'II"(0,Q)
I 2n

P'<O, ji>0,

(3c)

the solution of which is

I(0 r&,) = I(0,Q)exp - i-il, jt<0,

l (rj,2) = lo(rapŽ,Q)exp[- (T|:A-

(4a)

,u > O. (4b)

(B) Collided Intensity

(not, + 1)=(rji,) (OA- dP (Q'OQ)P(rfiY)

+ j dPa(Q')Io(T$4,?) (5a)
47 4r

P(OQ) = 0, p < 0, (5b)

IP(rAP,Q) =- | dQRv(#, Q' Q) lv If(TAQ),

p'<0, p>0. (5c)

Problem (B) can be numerically solved by any of the
standard methods in radiative transfer for the collided
radiation intensity P (for example, by the discrete ordi-
nates method; cf. Myneni et al., 1990). The atmospheric
parameters TA, WOA and PA can be specified for model
atmospheres or from measurements (section II, Atmo-
spheric Parameters).

The surface bidirectional reflectance factor Rv that
appears in Eqs. (3c) and (5c) is defined as

Rv(l5,f2' - itI(=nkr"AQ) ta' < 0,
Ii''I(Ta,

u > O, (6)

where l(Ta, Q') is the intensity incident on the canopy
along ' and I(TA,P,Q) is the surface radiance along 2.

x exp [ - F"1U_1 I I I
-4
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The latter is obtained from a numerical solution of the
canopy radiative transfer equation.

The classical approach to modeling radiative trans-
fer in vegetation has been to ignore all plant organs
other than leaves, and treat this leaf canopy as a gas
with nondimensional planar scattering centers, that is,
a turbid medium (Ross, 1981). Such an analogy permits
the use of standard theory, with minor modifications to
account for the angular orientation of the plane-scatterers.
The parameter optical depth depends on the direction
of photon travel and the scattering phase functions are
not rotationally invariant, thereby precluding the use of
polynomial expansion methods for handling the scatter-
ing integral (Shultis and Myneni, 1988; Marshak, 1989).

A vegetation canopy may be realistically idealized
as aggregations or clumps of leaves distributed randomly
in free space (vacuum). The intervening free spaces
between the clumps constitute the voids. The voids are
convolutely shaped and multiply connected three-dimen-
sional structures broken along those regions where leaves
are present. Consequently, a leaf canopy can be ab-
stracted as a binary medium-randomly distributed leaf
clumps and voids (Myneni et al., 1991). So, the idea of
a continuum host material that is central to radiative
transfer is not provided for in leaf canopies at optical
wavelengths.

If size of the scatterers is considered in a formula-
tion of the transport problem, it is necessary to include
not only the number density of scatterers but also the
consequences of introducing finite size gaps (holes or
voids) in the medium. Standard transport description
based on interaction coefficients derived from elemen-
tary volumes is not applicable because of the presence
of voids. Moreover, if the far-field assumption is violated,
as is the case in a leaf canopy, then the scatterers
will cast shadows; hence, information on the spatial
distribution of scatterers is required to evaluate cross
shadowing (Myneni and Asrar, 1991).

A need for such a theory has a strong basis in experi-
mental observations of exiting radiations measured in
opposition to a monodirectional source (Kuusk, 1985).
The classical theory assumes an infinite number of un-
correlated nondimensional scatterers thereby affording a
continuum description of the configuration space. It is
clear that point scatterers cannot cast shadows and
thus, the classical theory fails to predict or duplicate
experimental observations of exiting radiations, espe-
cially about the opposition direction. The theory of
photon movement and interactions in media where the
scattering centers are finite dimensional-oriented plates,
spatially distributed in clumps, with large intervening
free spaces has been developed in a series of recent
works (Myneni et al., 1991; Myneni and Asrar, 1991;
Myneni and Ganapol, 1991; Knyazikhin et al., 1992).

A numerical solution of the transport problem in-
cluding scatterer size effects has not yet been attempted

because of the difficulty of parameterization and com-
plexity of the equation set. Methods based on the ex-
change of radiosity between finite dimensional scatter-
ers provide an alternative to the study of this difficult
problem (Borel et al., 1991; Goel et al., 1991). For
remote sensing purposes, where the emphasis is on
physically realistic but simple models, heuristic formula-
tions generally suffice (Kuusk, 1985; Jupp et al., 1986;
among several others). Of these, the analysis of Ver-
straete et al. (1990) is especially notable for a precise
geometric formultion of the scatterer size effects. One
advantageous strategy is to include scatterer size effects
in first scattering and resort to classical (point scatterer)
theory for multiple scatterings (Marshak, 1989), as de-
scribed below.

A horizontally heterogeneous vegetation canopy of
physical depth Zc bounded by a flat and anisotropically
reflecting soil surface is considered. Specifically, we
seek a numerical solution to the following boundary
value problem:

[GeV + u(r,)]I( ) dQ'a,(r,2'-2)1(?,2
-4,

I(go) = 6(2 - a),
v T 1 

(7a)

v < 0, (7b)

I(ZcpQ)= dQ'Rs,2' Q)ju'
7 2n

x (Zc'PQ)' '< ) u> 0.

(7c)

The above assumes a spatially uniform incidence of unit
flux at the top of the canopy (z = 0), and that Rs is the
soil BRF distribution. For convenience we have retained
the same geometry as earlier [Eq. (1)] but with the
z-coordinate replacing the T-coordinate, and -(x,y,z).
Here, a is the extinction coefficient and a, is the differ-
ential scattering coefficient that depends on the absolute
directions of photon travel ' and Q. The rotationally
invariant problem is recovered if the slope distribution
of scattering centers is random.

Extinction of radiation in a canopy depends on the
leaf area density distribution and leaf normal orientation,
that is, the slope distribution. It is independent of wave-
length. A probabilistic description of the scattering event
requires information on the leaf-scattering physics in
addition to the above two structural parameters. Simple
models of the leaf-scattering phase function describing
specular reflection at the leaf surface and diffuse scatter-
ing in the leaf interior are available in the literature
(Marshak, 1989).

A model for the extinction coefficient that correlates
interaction rates between incident and once-scattered
photons is used here to describe the hot-spot effect
(Stewart, 1990)
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- exp[ - ED(Q,Q]}, if (.25 < 0,
(ar(2Q) if (5> 0, (8)

where E is an empirical parameter related to the ratio
of vegetation height to characteristic leaf dimension. Its
value was estimated to be between 1 and 8 based on
several sets of experimental data (Stewart, 1990). The
correlation distance D is

D(Q A)= [1 +1 +2(92*1) 0

This particular model for the modified extinction co-
efficient has two desirable features, namely, that for
( = - 2', a vanishes to result in the hot-spot effect, and
for large scattering angles it approaches the standard
coefficient a. Moreover, it is always positive unlike the
model proposed by Marshak (1989). The inclusion of d
in the transfer problem [Eq. (7)] is discussed below.

As in the previous case, let

ife,_) 1°(?,2) + t(,Q) + l1(r,Q) + I(rtQ) + I(F2)

(9)

where I is the uncollided intensity, 11 is the once-
collided intensity due to downward incident radiation,
and I" is the remainder intensity. Inserting Eq. (9) into
Eq. (7) results in the following:

(C) Downward Uncollided Intensity

[Q*V + (r,)]Wr,2) = 0, P < 0,

n(OQ) = n -Q- ), U <0,

IY(-rQ= I voexp[- -1 i dsu(o - s'2 oo)Jl

,,<O.

(D) Upward Uncollided Intensity

[2. + &(A,25]U(?,2) = 0,

(Zc,42) =-Rs(5,92 -) iuOIl?(Zc,i,5Q),

v>0, v, <0,

IV(r,Q) = (Zcp2)exp - I 0 ds'T(

,u>O.

(bOa)

(lOb)

11(0,2) = 0, v < 0,

ItRA) = dsfexpL3 dsa(? - si"2,)j

(12b)

v<0, vo<O.

(12c)

(F) Upward Once-Collided Intensity due to I

[29V + &it,2,Q]Nl2,Q) = a 8 -t 2 Q

v>0, v,,<O,

I1(ZC,p,Q) =0, v > 0,

(13a)

(13b)

1 r -dr 1 -Fdl
f~r,Q) = I' ds'exp[ 1 Ar dsW( - s'K2Qg,Q,)

x ai,2j - Q)-(pQ2),v>0, v, <O.

(13c)

(G) Remainder Intensity I"

[29V +a(t,2)]Fu(t2)= 4d2'a4A2' 2 0)`Q,25

+ i d4'o t' n )1(r,)

+ d2'a n (a),
2n ~~~~(14a)

It(O,Q) = O. A < O, (14b)

I-(Zc,,) =-| d_'Rs(j,2 -2) l/2 I(Zc,Q)
2 2)

+-i.2 dQ'R,(P,Q'- ) p'l F(&~,Q'),

v'<0, v>0. (14c)

(10c) In the above, it - (,x,y) is a point on the upper surface
of the canopy and likewise Ac- (Zc,x,y) on the lower
(soil) surface. The variable s denotes distance back along
the direction such as = - sQ. It is convenient from

v >0, (Ila) a numerical point of view to solve problems (E) and
(F) using the discrete ordinates method rather than
numerically evaluating Eqs. (12c) and (13c) because the
intensity P' is required to specify the source term [Eq.

(lib) (14a)] and boundary condition [Eq. (14c)] in problem
(G). The transfer problems defined by Eqs. (5), (12),

- s'Q,Q,Q4, (13) and (14) can all be solved by the standard discrete
I ordinates method (Myneni et al., 1990) or by iterative

methods (Knyazikhin and Marshak, 1991) with some
(lie) minor modifications.

(E) Downward Once-Collided Intensity due to I Vegetation Canopy Problem

+ a 2)]1i(?,2) = Ox(A, D 2)2(A20 ) The canopy radiative transfer problem differs from Eq.
[2eV + = a,(Y',Q0 - (7) in that both direct sunlight and diffuse (collided in

v < 0, v0< 0, (12a) the atmosphere) skylight are incident on the canopy.

X U,(PQ� - frIVQ ),
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The atmospheric radiative transfer problem [Eq. (1)]
must be solved first in order to specify the boundary
conditions for the canopy problem. In this section, a
brief description of the canopy problem is given.

The governing radiative transfer equation and bound-
ary conditions are of the form

[2eV + a(,2)]I(tQ) = i dQ'a)(Ir,(Q' ? 92),I2

I(0,fl,2) = I~eXP _ TA ( -.

+ Id(Op,Q), v < 0,

I(Zc,P,92)= ± dQR (f,Q2 Q)Lu'I
n 2r

x (Zcji,2, v' < 0,

v>0,

(15a)

(15b)

(15c)

where IE is the extra-terrestrial solar radiation incident
at the top of the atmosphere along 2, about wavelength
A. The term Id(O,i,Q) is the atmospheric intensity distri-
bution incident on the canopy and is obtained from a
numerical solution of the transfer problem denoted by
Eq. (5), that is, the atmospheric transmittance. The
atmospheric transmittance can be spatially averaged
without loss of much accuracy. With this simplification,
the canopy radiative transfer problem [Eq. (15)] can be
reduced to the following problems [cf. Eq. (9)]:

(H) Downward Uncollided Intensitu

[QV + a(, Q)]1?&,Q) = 0, v<0,

l.(OQ) = IEexp - 1]-6(!--Q )

+ Id(O,Q), v < O,
IA°r,2) = R(, )

1 r-ti
x exp - i dsa( _ s' CL -l I I 

,u < O. (16c

(I) Upward Uncollided Intensity

[Q*V + (,4)]I(,2) = 0, v > 0, (17a

AI(Zc,,92) = I191 (2)Kl2ilI4(ZcP,2i),

u>0, vi<O, (17b

ItjCr,2) = 1A(ZcA)exp[ - l C ds'&(? -s'2,n,2)1

v>0.

Ir,Q) = ZROF11a), i=0,1,...,N

(J) Downward Once-Collided Intensity due to I

[Q2V + a2)]t(t2) = X

v<0, v,,<O,
I(0,Q) = O. u < O,

(18a)

(18b)

Il(r,2) = ds'exp [l- T dsla(r -s'9,Q)]

27t

v<0, v, <O. (18c)

(K) Upward Once-Collided Intensity due to 

[2eV + &(t,2Q)]1hit,2) = a (7 (-Q)I?~t,2i),

> v. pi<O, (19a)

Al(ZcPQ) = 0, > 0, (19b)

A (r,2) = J ds'exp[ Mt ds"&(r-s"Qn)

x C,(r,Gi i - Yr'Q)

v>0, vi<O.
IVr,2) = ZAi(rF,2),

(19c)

i = 0,1,. .. ,N

(L) Remainder Intensity P'

Same as Problem (G)-Eq. (14)

In the above equations, Id is the spatially averaged
(16a) atmospheric transmittance incident along Q with i = 0,

1,2,. . .,M, where 2M is the number of discrete directions
in the unit sphere. The index i = 0 corresponds to the
incident solar direction Q. with the assumption that

(16b) ,, $ Q,, where QN is the quadrature set of discrete
ordinates. A particular advantage of this formulation is
that it circumvents the ambiguity associated with the
coefficient 6, which has a dependence on the photon's
previous direction of travel [namely Eqs. (17) and (19)].

Parameterization, Solution, and Validation
In the section entitled "Forward Problem Formulation"
we have seen how the forward modeling of the physical
problem can be posed as boundary value problems in
radiative transfer. A numerical solution of these equa-
tions requires parameterization of the composition and
optical properties of the media in question. This issue
is addressed here together with some examples of model
validation.

Atmospheric Parameters
Atmospheric optical depth TA, single scattering albedo
W0A and phase function PA are parameterized for stan-
dard, cloudless, and horizontally homogeneous atmo-

I I
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spheres. Molecular optical depth rA at wavelength A is
evaluated from refractive index of air and molecular
density distribution. Routines from the 5S code can be
used to calculate Tt and the Rayleigh phase function Pm
(Tanr6 et al., 1990). The profile of the atmospheric
aerosol distribution is based on a recommendation by
the International Radiation Commission (IRC) applica-
ble to continental areas with an aerosol optical depth
of 0.23 at 0.55 vm (Deepak and Gerber, 1983). The
aerosol scattering phase function P' can be modeled
using the Henyey-Greenstein function or other such
analytical expressions. The asymmetry parameter of the
Henyey-Greenstein function g and the aerosol single
scattering albedo coa are tabulated in the IRC report
for several wavelengths in the solar spectrum. The total
atmospheric optical depth TA, single scattering albedo
W9A and the scattering phase function PA are evaluated

assuming external mixing. A modified version of LOW-
TRAN-7 is used to select wavelength bands where atmo-
spheric absorption is less than 0.1 (S. C. Tsay, personal
communication). Both line and continuum absorption
by 16 gaseous species at any solar zenith angle can be
considered in selecting these windows (Table 1).

Canopy Parameters
Numerical evaluation of the coefficients a and a, in
Eqs. (7a) and (15a) requires information on the leaf-area
density distribution in the stand UL, leaf normal orienta-
tion distribution gL and the leaf scattering phase function
YL. A vegetation canopy can be simulated as clumps of
leaves randomly distributed on a reflective soil with a
ground cover (ge) between 0 and 100 %. A flat horizontal
ground area (a,) of dimensions Xs x Ys is considered for
simulation purposes. The height of the canopy is as-
sumed equal to the height of the clumps (Zs = Zc). If L,
is the clump leaf-area index, then by definition, the
canopy leaf area index is given by the product g x Lc
Leaf-area density distribution inside the clumps can
be modeled using simple analytical functions, namely
quadratic (Myneni et al., 1990). For instance, if leaf area

inside a clump is assumed to be uniformly distributed,
then UL = L, I Zc.

The leaf normal orientation can be assumed to be
azimuthally symmetric. The distribution along the polar
angle can be modeled using the standard distributions:
planophile, erectophile, plagiophile, extremophile, and
uniform. The discrete Beta distribution is recommended
because of its simplicity and versatility (Strebel et al.,
1985). With only two parameters this distribution repre-
sents most leaf normal orientations encountered in na-
ture.

The leaf scattering phase function 2k, can be written
as the sum of diffuse scattering inside the leaf (YLD)

(the bi-Lambertian model; Ross, 1981) and specular
reflection at the leaf surface (YLS) (Vanderbilt and Grant,
1985). The leaf spectral reflectance (rL) and transmit-
tance (tL) are typically measured with integrating
spheres. They can also be simulated using models of
radiation transport in leaves. Jacquemoud and Baret
(1990) developed one such model that allows simulation
of rL and tL in the 0.4-2.5 vm interval, using only three
parameters-a parameter characterizing leaf mesophyll
structure, chlorophyll concentration, and leaf water con-
tent. Table 2 presents values of standard leaf optical
properties for the wavelength bands of interest.

Soil Parameters
Bidirectional reflectance factors of the soil, Rs, can be
described following Hapke's formulation applied to bare
rough soil surfaces (Pinty et al., 1989; Jacquemoud et al.,
1992). The soil is assumed to be a half-space (semi-
infinite) and first-collision intensity is evaluated analyti-
cally, with shadows included to model the hot spot
effect. Multiple scattering is simplified to a two-stream
problem. Standard values for the coefficients (b, c, b,
c') of the Legendre polynomial expansion for the particle
phase function, and the parameter h related to the
porosity of the medium, are given in Jacquemoud et al.
(1992). The single scattering albedo of the soil particu-

Table 1. Atmospheric Parameters Used in the Base Case

Atmospheric parameters

Aerosol
Incident Rayleigh Aerosol single

Wavelength energy optical optical scat. Anisotropic
(micrometers) (w/ms) depth depth albedo parameter

0.4011-0.5133 214.48 0.200 0.282 0.899 0.642
0.5153-0.5333 37.00 0.114 0.242 0.896 0.638
0.5353-0.5873 102.15 0.086 0.225 0.892 0.637
0.5893-0.6852 163.57 0.051 0.194 0.887 0.633
0.6912-0.6972 14.49 0.036 0.175 0.880 0.631
0.8280-0.8940 69.62 0.015 0.132 0.842 0.632

Within these wavelength bands atmospheric absorption is less than 10%. A clear and turbid
atmospheric conditions were simulated by doubling and halving the total atmospheric optical
depth in each wavehand.
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Table 2. Canopy and Soil Parameters Used in the Base Case

Canopy and soil parameters

Single scattering albedoLeaf Leaf of soil particulates
Wavelength hemispherical hemispherical

am) reflectance transmittance Sand Clay Peat

0.4011-0.5133 0.058 0.008 0.470 0.217 0.061
0.5153-0.5333 0.108 0.061 0.445 0.198 0.045
0.5353-0.5873 0.131 0.084 0.536 0.214 0.054
0.5893-0.6852 0.083 0.038 0.600 0.267 0.074
0.6912-0.6972 0.091 0.051 0.612 0.271 0.081
0.8280-0.8940 0.510 0.418 0.710 0.316 0.194

The leaf optical properties are average values of several measured spectra (F.G. Hall, Per-
sonal communication). The soil values are taken from Jacquemoud et al. (1992).

lates cos is the only parameter dependent on wavelength
and soil moisture (Fig. 4 in Jacquemoud et al., 1992),
although this assumption is not necessarily beyond de-
bate. The single scattering albedo of clay, sand, and
peat particulates, integrated over the wavebands of in-
terest, are given in Table 2.

Numerical Solution
The radiative transfer problems [Eqs. (1) and (15)] can
be simplified and approximated under a variety of as-
sumptions. The medium may be assumed to be horizon-
tally homogeneous to permit a one-dimensional analysis.
The transport equation can be azimuthally averaged to
result in a one-angle problem (Shultis and Myneni, 1988)
or integrated over all directions to obtain flux transport
equations (Suits, 1972). The medium can be assumed
to be semi-infinite to allow substantial simplifications
(Verstraete et al., 1990). The leaf-normal orientation
can be assumed to be a delta function to facilitate semi-
analytical solutions (Ganapol and Myneni, 1992). Multi-
ple scattering can be approximated using solutions of
flux propagation equations (Nilson and Kuusk, 1989).
Similarly, assumptions about the boundary conditions
(vacuum and/ or isotropic boundary conditions) facili-
tate numerical solution of the transport problem (Dick-
inson et al., 1990). Detailed reviews of literature rele-
vant to optical remote sensing problems can be found
elsewhere (Goel, 1988; Kaufman, 1989; Myneni and
Ross, 1991).

The standard discrete ordinates method with some
modifications can be employed to numerically solve the
transfer problems (B), (E)-(G), (J)-(L), for the radiation
intensity (AQ). The discrete ordinates algorithm satis-
fies photon conservation and guarantees positivity, ho-
mogeneity and stability of the solution (Knyazikin and
Marshak, 1991).

The angular variable is discretized using equal
weight (EQN) quadrature sets of order N (or other quad-
rature schemes), thereby restricting the flight of photons
to discrete quadrature ordinate directions. The spatial

derivatives are approximated by finite difference schemes
(or, finite elements). The resulting algebraic system of
equations are solved iteratively on the scattering source
by the method of sweeping in the phase-space grid.
Convergence of this iteration is slow in optically deep
canopies and in situations where the single scattering
albedo is close to unity. Hence, it is desirable to acceler-
ate convergence of the iteration, for which several stan-
dard methods exist (Myneni et al., 1990).

The calculation scheme is as follows. The canopy
BRF matrix Rv is evaluated first [Problems (C)-(G)]. The
atmospheric transfer problem is then solved using this
matrix [Problems (A)-(B)]. The radiation field incident
on the canopy is now known [Eq. (15b)]. So, the canopy
transport problem can be solved [Problems (H)-(L)]. A
detailed energy balance is performed at each level.
Interpolation schemes to decouple quadrature orders
between the canopy and atmospheric radiative transfer
calculations can be implemented for tailoring accuracy
and also to evaluate the radiance field in desired angular
grids. Essentially this involves performing one additional
sweep of the phase-space, using the converged source
distribution, into the desired angular grid. This entire
scheme is wavelength specific. Details on the applica-
tion of the discrete ordinates method for numerical
solution of the transport equation can be found in My-
neni et al. (1990).

Model Comparison and Results
A comparison of four different models with varying as-
sumptions, but all based on a numerical solution of the
transfer equation, is shown in Figure la. The implemen-
tation of our discrete ordinates method was rigorously
benchmarked and found to be four-digit accurate (My-
neni et al., 1988; Ganapol and Myneni, 1992). The
method was also validated with experimental data of
reflectance spectra collected over maize and soybean
(Myneni et al., 1988; Shultis and Myneni, 1988; Stewart,
1990; Myneni and Asrar, 1993), prairie grassland (Asrar
et al., 1989) and forest canopies (Myneni et al., 1992).
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The discrete ordinates model will be used as the bench-
mark. The model of Pinty et al. (1990) is notable for it
considers a canopy of infinite thickness. All of the mod-
els except the discrete ordinates use a flux approxima-
tion for multiple scattering. Of these, it appears that a
model based on an accurate evaluation of first scattering
and the two-stream model of Sellers (1985) for multiple
scattering gives the best approximation to the solution
of the transfer equation (the unpublished model of Ia-
quinta). In general, results of comparison of model pre-
dictions with empirical data, although satisfactory in
many cases, reveal two major deficiencies in most mod-
els; namely, the effects of clumping and size of canopy
elements. A realistic treatment of these effects and a
simplified three-dimensional model of radiation transfer
are topics for future studies.

For vegetation, one generally deals with wave-
lengths in two spectral regions located on both sides of
0.7 um. Indeed, the strong chlorophyll absorption that
corresponds to low values of the single scattering albedo
(less than 0.2) should allow us to retrieve both the
optical and structural properties of the medium because
of the resulting high anisotropy in the exiting radiance
field. The near infrared region is characterized by high
leaf reflectance and transmittance, allowing radiation to
easily reach the ground after multiple scattering events.
Moreover, the exiting radiance field is less anisotropic
because photons are diffused in all directions due to
multiple collisions. This means that the retrieval of

canopy properties will be more difficult. Thus, the ratio
of single to total scattering is an indicator of the canopy
behaviour with respect to its intrinsic radiative proper-
ties (Figure lb). The ratio is strongly nonlinear with
respect to leaf area index and the single scattering
albedo. It can be seen that the single scattered radiance
is less than 50% of the total radiance for the large
part. This clearly indicates that the multiple scattering
component has to be modeled rather accurately for
extracting quantitative information from data collected
over this single scattering albedo-leaf area index domain.

CAVEATS IN REMOTE SENSING

The central hypothesis in remote sensing is that radia-
tion reflected from a surface carries information about
the state of the surface. The appropriation of signal
characteristics with surface properties is complicated
for one can never measure in isolation the desired
cause and effect in the system. In the remote sensing
of vegetation from satellite-borne instruments, several
caveats are in order. Several of these are discussed in
this section.

Bidirectional Effects

The angular distribution of top-of-the-canopy (TOC)
spectral radiance is shown in Figure 2a for two wave-
lengths and solar zenith angles. The canopy leaf area
index is 3 and uniform leaf normal orientation distribu-

Figure lb. The ratio of single to total scattered radiance obtained from a two-stream model (Sellers, 1985). The il-
lumination angle is 45°, the soil albedo is 0.3 and the leaf normal orientation is uniform.

0.

N .
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tion is assumed. The other parameter values are given
in Tables 1 and 2. At both wavelengths, the distributions
are anisotropic with the hot spot in the retro-solar direc-
tion. The hot-spot radiance is, in general, the maximum
of the distribution. The minimum is found near the
nadir on the forward scattering side. The hot-spot effect
is more pronounced in the red than near-infrared be-
cause of the contrast between sunlit and shaded ele-
ments. The degree of anisotropy increases with solar
zenith angle. From these results, it can be seen that
differences in radiance observations measured at differ-
ent solar and view angles are not necessarily attributable
to changes in the surface. The differences may be due
to bidirectional effects of the radiance field.

Atmospheric Effects

The corresponding angular distribution of top-of-the-
atmosphere (TOA) spectral radiance field is shown in
Figure 2b. TOA radiances differ from those above the
canopy both in terms of their magnitude and angular
distribution. The net atmospheric effect, which is the
difference between TOA and TOC values, decreases
almost linearly with increasing surface reflectance (Kauf-
man, 1989). It is positive at shorter wavelengths (namely
red) where atmospheric scattering plays a dominant

Figure 2a. Angular distribution of top of the canopy radi-
ance in the solar principal plane at red and near-infrared
wavelength. Unit incident irradiance is assumed such that ra-
diance x 7r is the corresponding bidirectional reflectance fac-
tor. 06 is the solar zenith angle in degrees.

TOP-OF-THE-CANOPY RADIANCE

role and negative at longer wavelengths (near-infrared)
where aerosol and gaseous absorption predominate. For
instance, TOA radiance at the red wavelength is 2 to
10 times greater than TOC red radiance depending on
the view and solar zenith angles. The hot-spot effect
so distinctive at this wavelength in the TOC radiance
distribution is masked due to scattering in the atmo-
sphere. At near-infrared wavelengths, the net atmo-
spheric effect is only slightly negative. The TOA radi-
ance distribution at this wavelength is similar to that
above the canopy. When remote sensing vegetation
through an atmosphere, these spectral atmospheric
effects must be corrected.

Canopy Structural Effects
The architecture of a leaf canopy, for the purposes of
studying radiation transport, can be characterized by
the canopy height, leaf size, orientation and density
distribution. Leaf size distribution and canopy height
determine the amplitude and width of the vegetation
hot spot (Marshak, 1989). The influence of leaf orienta-
tion on TOC spectra is shown in Figure 3, together
with the spectrum of a leaf simulated with the PROS-
PECT model of Jacquemoud and Baret (1990). If a
parameter such as the leaf area index is to be determined

Figure 2b. Angular distribution of top of the atmosphere ra-
diance in the solar principal plane at red and near-infrared
wavelength. Unit incident irradiance is assumed such that ra-
diance x 7t is the corresponding bidirectional reflectance fac-
tor. 06 is the solar zenith angle in degrees.
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from remote radiance observations, the structural effect
due to leaf orientation must be kept in mind.

Background or Soil Effects

The radiance field measured above the vegetated land
surface is a composite of both soil and vegetation contri-
butions. When vegetation parameters are to be deter-
mined from TOC measurements, methods to minimize
the contribution of the soil must be developed (Huete,
1988). On the other hand, when surface parameters
such as the albedo are of interest, it is important to
accurately include soil contribution. This is illustrated
in Figure 4, where surface albedo is plotted against
canopy leaf area index for different canopy parameters
and for the cases of a bright and a dark soil. Soil brightness
determined the nature of the relationship between sur-
face albedo and canopy LAI. When bare soil and dense
canopy albedo are comparable in magnitude, as in bright
soil simulation (0.27 and 0.30, respectively), surface
albedo is a weak function of leaf area index. On the
other hand, if the soil is absorptive (bare-soil albedo
is 0.06), surface albedo increases near-linearly for
LAIs < 3, after which it tends to an asymptote. Hence,
the surface albedo of a vegetated land surface can vary
widely depending upon soil brightness.

Nonlinear Effects of Scattering
The radiative transfer problem is linear in incident radia-
tion, but nonlinear in scattering. The consequences of

non-linearity are illustrated in Figure 5, where the
change in TOC nadir bidirectional reflectance factor
(BRF) is plotted against the single scattering albedo
(sum of leaf reflectance and transmittance) at two values
of canopy leaf area index (LAI). In the case of a sparse
canopy (LAI = 1), changes in leaf reflectance (ArL = 0.05
& 0.1) at any value of the single scattering albedo are
not detectable in TOC nadir BRFs. On the other hand
for a dense canopy (LAI = 5), changes in leaf reflectance
are detectable in TOC BRFs, which depend non-linearly
on the single scattering albedo. These effects are im-
portant in the remote sensing of leaf biochemical constit-
uents, where changes in constituent concentration trans-
late into changes in leaf optical properties.

Effects of Spatial Heterogeneity
Spatial distribution of the radiance field and associated
processes is affected by spatial heterogeneity of the vege-
tated surface. Heterogeneity can be conceptually quanti-
fied at a macroscopic scale by ground cover and plant
spatial distribution. The structural and optical properties
of plants in a given area are spatially distributed under
natural conditions. As a first approximation, these prop-
erties may be assumed spatially invariant; that is, the
plants in a given area are identical. In this case, spatial
heterogeneity can be prescribed by ground cover, plant
spatial distribution, and plant leaf area index. The impor-
tance of spatial heterogeneity arises in the context of
scaling point observations to areal values.

Figure 3. Spectral distribution of nadir vegetation bidirec-
tional reflectance factors for canopies with different leaf nor-
mal orientations. The leaf area index of the canopies is 3.
The solar zenith and azimuth angles are 300 and 0. The
corresponding leaf hemispherical reflectance spectrum is
also shown.
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Figure 5. Change in vegetation canopy nadir bidirectional
reflectance factor with single scattering albedo (sum of leaf
hemispherical reflectance, r, and transmittance, tL).

The relationship between the fraction of photosyn-
thetically active radiation absorbed by the photosynthe-
sizing tissue in a canopy (FAPAR) and the bidirectional
reflectance transform NDVI is an example of scale in-
variance (Figure 6). It can be seen that the relationship
between FAPAR and TOC NDVI is similar for homoge-
neous (ID) and heterogeneous (3D) canopies. There is
a near-unique correspondence between TOC NDVI and
FAPAR irrespective of the spatial distribution of leaf
area. A given value of TOC NDVI might result from
various configuations of ground cover and plant leaf
area index. In all such cases, FAPAR is nearly unique.
This relationship is scale invariant, for pixels of different
spatial scales but of equivalent values of TOC NDVI
are likely to have equivalent FAPAR values.

Adjacency Effects

The radiance field measured by a remote sensor may
contain contributions from areas adjacent to the target
of interest because of scattering in the atmosphere into
the field of view. The adjacency effects result in loss of
contrast when ground areas of varying reflectivities are
observed. This is illustrated in Figure 7, where the
square wave modulation transfer function (MTF) is plot-
ted against spatial frequency. The MTF of an optical
system describes the variation in output contrast be-
tween the peaks and valleys of a sinusoidal or square-
wave pattern as a function of spatial frequency (Diner
and Martonchik, 1984),
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Figure 6. The relationship between the fraction of photosyn-
thetically active radiation absorbed by vegetation (FAPAR)
and top-of-the-canopy normalized difference vegetation in-
dex (TOC NDVI) in homogeneous (ID) and heterogeneous
(3D) canopies with different leaf normal orientation distribu-
tions.

Figure 7. The square-wave normalized modulation transfer
function of strip field ground albedo pattern for three atmo-
spheres evaluated from nadir intensities using Eq. 20.
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MTF(AX) =

1 [I(AX 2,y,OQ) - I( - AX / 2,y,0,Q)
MTFOA I(AX I2,y,0,Q) + I( - AX /2,y,0,Q)j

(20)

where AX is width of the strip, and MTFO is the MTF
as AX-oo. The adjacency effects reduce the contrast
between alternating bright and dark strips with increase
in atmospheric optical depth and frequency of ground
reflectivity variations.

Nonlinear Mixing
The radiance measured by a remote instrument can be
written as the sum of component radiances because the
governing equation is linear in radiance. For instance,
the total radiant intensity can be written as the sum
of unscattered, once-scattered, and multiply-scattered
radiant intensities. With respect to the problem parame-
ters, such as incident and observation angles, leaf area
index (or, optical depth), canopy single scattering albedo
and soil reflectance, the equation is nonlinear because
of the multiple scattering term. The nonlinear effect
due to scattering between leaves and soil is particularly
relevant in this context. Consider, for instance, a pixel
of incomplete ground cover. The radiance of this pixel
is not a linear combination of the vegetation and soil
radiances because of the radiative interaction between
the vegetation and soil due to multiple scattering. This
is illustrated in Figure 8 where the pixel radiance at
near-infrared is plotted against the radiance at red. The
linear mixing model assumes that vegetation and soil
radiances can be combined linearly with weights propor-
tional to ground cover. This assumption is clearly vio-
lated under natural conditions because of multiple
bounces of photons between leaves and the soil. Thus,
care must be excercised when multispectral data are
analyzed to derive information on the scene components
based on linear mixing models.

Topographic Effects
It has long been recognized that topography can signifi-
cantly modulate remotely sensed radiances, leading to
errors in retrieved surface reflectances. For an unvege-
tated sloping surface, topography affects the estimation
of reflectances from TOA radiances in two ways. First,
the amount of energy incident on a surface is a function
of topography (via slope, aspect, and shadowing). Sec-
ond, the upwelling flux off the surface is also dependent
on the position of the slope relative to the sensor.
Topographic factors that must be considered include
elevation, slope, aspect, local shadowing by nearby ter-
rain, obstruction of diffuse sky radiation by nearby ter-
rain, and the configuration of nearby terrain relative to
the slope of determining the amount of energy reflected
towards the slope. The problem is confounded because
topographic effects are dependent on the waveband of
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Figure 8. Relationship between canopy nadir bidirectional
reflectance factors at red and near-infrared wavelengths.
Canopies of varying leaf area indices were simulated by
changing ground cover (0-100%) and plant leaf area index
(PLAI = 1 & 5). The nonlinear mixing results were obtained
from a solution of the three-dimensional radiative transfer
equation.

interest and on the resolution of the sensor. If the IFOV
includes many different terrain elements (resolutions
greater than a hundred meters or so) each element has
its own topographic effect and contribution to the total
radiance. This creates a very difficult inversion problem.
A summary of topographic effects and some correction
strategies can be found in Dozier (1989) and Dubayah
(1992).

Existing correction models are probably of limited
applicability for vegetated surfaces. The elements of a
canopy are rarely oriented parallel to a slope; therefore,
the effect of the underlying slope is not clear. Research is
needed to couple topographic formulations with canopy
radiative transfer models. Such a coupled model could
be used toward the development of a systematic ap-
proach for correcting radiances from vegetated surfaces
for topographic effects.

ALGORITHMS

Algorithms in remote sensing are tools that connect
radiance measurements to surface properties of interest.
In vegetation remote sensing one can make a distinction
between radiation model parameters (leaf area index,
leaf and soil optical properties, etc.) and surface state
parameters (spectral albedos and radiation absorption
amounts, photosynthetic and stomatal conductance rates,
etc.). The corresponding relations in many cases are
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complicated nonlinear functions (Sellers, 1985) and we
must resort to substantial simplifications in developing
algorithmss if they are to be practical. In this section,
we shall discuss some of the methods that are currently
in use and that may be broadly termed as algorithms.

Spectral Vegetation Indices
Spectral Vegetation Indices (SVI) are synthesized from
spectral reflectance factors using a variety of techniques
(Tucker, 1979). A number of SVIs have been proposed
in the literature that employ various combinations (sum-
ming, differencing, ratioing, etc.) of vegetation Bidirec-
tional Reflectance Factors at two or more wavelengths.
It is not our objective to review the various indices or
perform a comparative analysis here; the discussion is
limited to a few indices and their utility in inferring the
desired surface properties.

The most common indices are the Normalized
Difference Vegetation Index and the Simple Ratio (SR).
The component canopy reflectance factors invariably
contain contribution from the soil or background litter.
A Soil-Adjusted Vegetation Index (SAVI) was proposed
by Huete (1988), which minimizes soil brightness influ-
ences on SVIs involving red and near-infrared wave-
lengths. In addition to minimizing the effect of back-
ground, top-of-the-atmosphere spectral radiance values
must be corrected for atmospheric effects to recover the
vegetation signal. One such index, the Atmospherically
Resistant Vegetation Index (ARVI), was recently pro-
posed by Kaufman and Tanr6 (1992) and incorporates
a self-correction process for the atmospheric effect at
red wavelength by utilizing the radiance difference be-
tween blue and red wavelengths. The Global Environ-
ment Monitoring Index (GEMI) was recently developed
to specifically correct for atmospheric effects in AVHRR
data by employing a nonlinear combination of red and
near-infrared reflectances (Pinty and Verstraete, 1992a).
GEMI exhibits a high atmospheric transmissivity, insen-
sitivity to soil reflectance, with the exception of very
bright soils, and is empirically representative of vegeta-
tion properties in a manner similar to the other indices.

There is substantial empirical, and in some cases
theoretical, evidence that these indices are related to
several vegetation parameters such as ground cover, leaf
area index, radiation absorption, canopy photosynthesis,
canopy conductance, etc. (Hall et al., 1992). Although
these findings are highly encouraging, it must be empha-
sized that the information content of an index depends
only on the constituent radiances (or reflectances) and
that an empirical relationship does not necessarily imply
a causal relationship. Vegetation indices are a conve-
nient way of summarizing the remote observations and
are useful in mapping and event detection, and in some
instances of estimating surface parameters, an example
of which is discussed below.

From theoretical analysis it can be shown that the
normalized contrast in canopy reflectance between red
and near-infrared wavelengths (NDVI) is, within some
bounds, responsive to the leaf area in a canopy. Simi-
larly, the amount of photosynthetically active radiation
absorbed by the photosynthesizing tissue (FAPAR) is
related to the green leaf area of the canopy. Thus, we
may expect a causal relationship between NDVI and
FAPAR (Asrar et al., 1984). The nature of this relation-
ship and how it varies with respect to changes in canopy,
soil, and atmospheric parameters was investigated utiliz-
ing the radiative transfer method outlined in the section
entitled "Statement of The Physical Problem" (Myneni
and Williams, 1993). The relationship between FAPAR
and NDVI was found to be independent of pixel hetero-
geneity, parameterized with ground cover, clump leaf
area index, and variations in leaf orientation and optical
properties. On the other hand, it was sensitive to back-
ground, atmospheric, and bidirectional effects. Atmo-
spheric and bidirectional effects may be ignored if
the analysis is limited to near-nadir top-of-the-canopy
NDVI. Further, if the soils are moderately reflective,
background effects may also be ignored. A linear model
fits the resulting relationship between FAPAR and nadir
TOC NDVI very significantly (r2 = 0.943, N = 280). The
slope of this relationship is 0.8465 with an intercept of
- 0.1083 (cf. Myneni and Williams, 1994). This linear

model or algorithm for FAPAR is valid for: (a) solar
zenith angle less than 60°, (b) view zenith angles about
the nadir, (c) soils or backgrounds of moderate bright-
ness (NDVI about 0.12), (d) atmospheric optical depths
less than 0.65 at 550 nm.

Ecosystem productivity models can be driven with
FAPAR estimates derived from remote radiance obser-
vations. Spectral measurements from satellites must be
first corrected for pixel location and converted to radi-
ances using proper geometric restitution and calibration
procedures. The TOC radiance field can then be de-
duced from the TOA distribution using an atmospheric
correction algorithm. This has been done for 13 AVHRR
images of Belgium by Veroustratete et al. (1993). The
TOC NDVIs thus derived were converted to FAPAR
values using the linear model described above. Such a
FAPAR image of Belgium is shown in Figure 9. A
fine resolution FAPAR time series restituted from the
coarser empirical series through Fourier analysis was
then utilized to drive a model of net ecosystem carbon
exchange in a deciduous forest (Veroustraete et al., 1993).

Model Inversion
A successful model inversion allows the retrieval of
several independent model parameters. An inversion
may further allow the calculation of surface state vari-
ables (spectral albedos, FAPAR, etc.) from a limited set
of empirical reflectance values depending on the stabil-
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ity and uniqueness of the problem. Although parameters
of biological or climatological importance may be most
desirable, practical limitation imposed by the number
and distribution of reflectance samples, spectral regions,
signal anisotrophy, and model sensitivity may dictate
the optimal parameter set.

In order to infer any vegetation parameter with
good accuracy, model inversion needs to be mathemati-
cally well conditioned; it implies that the partial deriva-
tives of the bidirectional reflectance field with respect
to a particular parameter has to be nonzero and should
take values as high as possible. Goel and his colleagues
pioneered the study of model inversions as detailed in
a series of papers beginning in 1983. After developing
an appropriate problem definition, merit function and
inverstion strategy (Goel and Strebel, 1983), they in-
verted several one-dimensional models-most notably
the Suits (1972), SAIL (Verhoef, 1984) and Cupid (Nor-
man, 1979) models-and quantified parameter relation-
ships and model sensitivity. Strahler and his colleagues
developed and inverted a reflectance model that simu-
lates a heterogeneous vegetation canopy as an assort-

ment of geometrical objects (Li and Strahler, 1985).
Antyufeev and Marshak (1990) developed a radiative
transfer model and inverted it using Monte Carlo tech-
niques. They retrieved three optical and four geometri-
cal canopy parameters from reflectance data at two
wavelengths. The hybrid three-dimensional model de-
veloped by Welles and Norman (1991) combines the
geometrical objects and radiative transfer approaches
to simulate the reflectance of heterogeneous vegetation
canopies. This model has been inverted by Goel some-
what less successfully (Goel, 1992, personal communica-
tion). Recently, simple analytical models have been de-
veloped and inverted specifically for application to
climate models (Dickinson et al., 1990; Pinty et al.,
1990). General discussion on model inversion and some
central ideas are concisely summarized in Privette et
al. (1994).

The general inversion problem may be stated as
follows: given a set of empirical directional reflectance
measurements, determine the set of independent model
parameters such that the computed directional re-
flectances best fit the empirical directional reflectances.
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The fit of the empirical data is determined by the merit
function (Goel and Strebel, 1983), E2, defined as

(21)
n

Q:2= (rj _ rn)2
j=l

where rj is the directional reflectance for a given scan
and solar angle geometry, rn,,, is the geometrically analo-
gous model estimate, and n is the number of reflectance
samples. A penalty function may be used to limit the
independent parameter space to physically possible val-
ues. For instance, the sum of leaf reflectance and trans-
mittance can be constrained, based on physical argu-
ments, to be 1. The ability to correctly determine
target parameters through model inversion therefore
depends on the dataset r 1 , the likeness of the model to
physical reality and ability of the optimization algorithm
chosen to minimize Eq. (21) over the parameter space.

There are several methods for minimizing the merit
function and the choice of a particular method depends
on the mathematical properties of the function to be
minimized. Three commonly used minimization rou-
tines are: the downhill simplex method used by Privette
et al. (1993) (subroutine AMOEBA from Press et al.,
1986), the conjugate direction set method used by
Kuusk (1991) (subroutine POWELL from Press et al.,
1986), and a quasi-Newton method used by Pinty et al.
(1990) (subroutine E04JAF from Numerical Algorithms
Group). These three routines do not require evaluation
of function derivatives for minimization. This is particu-
larly appealing for complex, nonlinear formulations, such
as those used in canopy reflectance modelling.

In practice, measured data are contaminated with
noise from various sources. In the context of model
inversion, the question of the impact of noise on the
accuracy of the parameters retrieved must be addressed.
These effects can be analyzed using synthetic data sets,
that is, model-generated data, where a Gaussian noise
of zero mean and known standard deviation is added to
the data (Pinty et al., 1990).

As mentioned above, model inversions are per-
formed using Eq. (21) with an optimization routine
provided by standard libraries [E04JAF from the Numer-
ical Algorithm Group for solving the nonlinear system
with a quasi-Newton scheme, and RAN 1, GASDEV from
Numerical Recipes (Press et al., 1986) for the generation
of random noise]. A number of synthetic noisy data sets
can be created depending on the conditions used to
select the random noise series. The retrieved values for
each of the model parameters can be averaged, which
leads to an evaluation of the behavior of the inversion
procedure with respect to noisy data sets. A critical issue
when performing such an analysis is the randomness of
the series of generated numbers, which in turn depends
on the seed values used in the procedure. To illustrate
this aspect, we considered two different cases by chang-
ing the seed values applied to the Numerical Recipes
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Figure Oa. Mean values of the single scattering albedo as a
function of the standard deviation of the noise in the input
data. For a given level of noise, each value corresponds to
an average of 100 inversions performed by changing the
seed according to a regular progression of negative integer
numbers (Case 1). The same noise generator is used with
changing values in the standard deviation of the noise.
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Figure 10b. Same as Figure 10a except that the seeds are
randomly distributed both for a given level of noise and
standard deviation of the noise (Case 2).

algorithm-the seeding series given by a regular pro-
gression of negative integer numbers (Case 1) and by a
series of a priori random integer values obtained from
a different external routine (Case 2). Figures lOa and
lOb show the results of these two methods for a sensitive
vegetation parameter, the single scattering albedo. The
mean quantities reported are averages over 100 individ-
ual values, each of these corresponding to the retrieval
made using the same level of noise but with a different
seed as indicated above. The results obtained in Case
1 indicate a systematic overestimation of this model
parameter with increasing noise level and, the smooth-
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Figure 1c. Distribution of the standard deviations corre-
sponding to the mean single scattering albedos obtained
when performed 100 inversions, given as a function of the
standard deviation of the noise in the input data (Case 1).

Table 3. True and Mean Retrieved Parameter Values
with Standard Deviations for Soybean Data of 27 Aug.
1980.

True Retrieved

Parameter p , a

LAI (both channels) 2.9 4.1 2.5
LAI (red only) 5.4 2.4
LAI (NIR only) 2.8 1.9
Leaf refl. (NIR) 0.454 0.495 0.067
Leaf refl. (red) 0.073 0.089 0.006
Leaf trans. (NIR) 0.518 0.376 0.055
Leaf trans. (red) 0.064 0.070 0.028
Soil refl. (NIR) 0.232 0.418 0.127
Soil refl. (red) 0.143 0.133 0.045
,u (Beta LAD) 1.61 1.54 0.502
v (Beta LAD) 2.18 2.52 1.03

Unless otherwise noted, retrieved values were averaged over all 12
datasets and both channels. True LAD parameter values are from Goel
and Strebel (1983).

6

2

0
1 2 3 4 5

Standard deviation of noise x10-3

Figure 10d. Same as Figure 10c; (Case 2).

ness of the plotted curves is clearly noticeable. By contrast,
Case 2 leads to much more variable and nonmonotonic
features regarding the relationship between the noise
level and the average retrieved single scattering albedo.
For the same two cases, Figures lOc and lOd show the
standard deviation corresponding to each of the ten
retrievals made at a given noise level, plotted as a
function of this noise level. Both figures depict a quasi-
linear relationship between the standard deviation in
the input noise and the standard deviation in the re-
trieved single scattering albedo values. In Case 2, the
distribution of the standard deviation values at a given
level of input noise appears to be more noisy than in
Case 1.

Inversion of empirical data with a one-dimensional
radiative transfer model (Shultis and Myneni, 1988) is

illustrated with the soybean data collected by Ranson
et al. on 27 August 1988 (Privette et al., 1993). Data
from two spectral bands, 0.6-0.7 pm (red) and 0.8-1.1
,um (NIR), were used in the inversion. The downhill
simplex method was used for minimizing the merit
function. The mean and standard deviations of the re-
trieved parameters are shown in Table 3. The mean
retrieved LAI is high, although the measured value is
within one standard deviation. Closer inspection reveals
that the red LAI estimate is high but the NIR estimate
is excellent (0.1 absolute error). The coefficients of the
Beta distribution are close to the true values and suggest
a predominantly erectophile canopy. Estimates of leaf
reflectance were reasonable though slightly high. Al-
though the red reflectance value differed by just 0.016
absolute, the measured value was outside the one stan-
dard deviation confidence interval. The NIR value differed
by 0.041 but was within the confidence interval. Leaf
transmittance was overestimated by 0.006 in the red
and underestimated by 0.142 in the NIR. The red soil
reflectance estimate was excellent (5% relative error).
The NIR estimate was high (80% relative error).

At the present time, inversion of physical models is
more of an art than exact science. Several topics in
inversion studies need to be investigated before an
operational scheme can be proposed. Some of these
include (1) alternate forms of the merit function and
their mathematical properties, (2) optimum number of
parameters for retrieval, (3) optimal sampling schemes,
(4) the importance of noise in the measurements, (5)
success in parameter retrieval at various wavelengths,
(6) starting points, (7) nesting of models of varying
accuracy in an inversion scheme and (8) definition of a
successful inversion. Furthermore, the competing ad-
vantages of computational efficiency and physical reality
should dictate some optimum level of model sophistica-
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tion. This threshold presently has not been determined
and undoubtedly will change with technical improve-
ments.

Expert System
Conventional algorithms such as those based on spectral
indices for inferring surface hemispherical reflectance,
percentage of ground cover, biomass, leaf area index,
photosynthetic capacity, etc. are static and limited in
scope. These algorithms cannot deal with the variability
inherent in remote sensing data (e.g., variable off-nadir
viewing capabilities, varying solar zenith angles, various
sensor wavelengths, cloud cover problems, missing data,
atmospheric effects, etc.). Information extraction sys-
tems, at a minimum, must be designed with these factors
in mind. In addition, it is desirable to obtain an estimate
of the accuracy of inference. Moreover, systems must
be flexible enough to handle decisions at the expert's
level.

In the recent years an expert system called VEG
was developed with the above in mind (Kimes et al.,
1991, 1992). The current version of VEG is a powerful
system for inferring vegetation characteristics using na-
dir and/or directional reflectance data as input. VEG
is also a powerful tool for aiding a researcher in devel-
oping new and more accurate techniques for inferring
vegetation characteristics as well as testing these tech-
niques. Finally, VEG has options to process files of
remotely sensed data collected over large regions of the
earth.

Part of VEG is designed to have any array of extrac-
tion techniques for inferring vegetation characteristics
using nadir and / or directional reflectance data as input.
Currently, the system has many techniques for inferring
spectral hemispherical reflectance, percentage of ground
cover and view angle extension. It is designed to be
easily expanded to handle other inferences, such as
total hemispherical reflectance, leaf area index, biomass,
photosynthetic capacity, etc. The system intelligently
and efficiently integrates traditional spectral data with
diverse knowledge bases available in the literature, from
field data sets of directional scattering behavior, and
from human experts. VEG accepts any combination of
nadir and / or off-nadir spectral data of an unknown
target as input, determines the best strategy(s) for infer-
ring the desired vegetation characteristic, applies the
strategy(s) to the target data, and provides a rigorous
estimate of the accuracy of the inference. Several re-
search applications using VEG have been made (Kimes
and Deering, 1992; Kimes and Holben, 1992; Kimes et
al., 1993a, 1993b).

Neural Networks and Genetic Algorithms
Recently, some new approaches to the extraction of
scene parameters from optical remote sensing data have

been developed by combining physically based models
and measurements with neural computing techniques.
Ishimaru et al. (1990) outlined the basic approach of
employing a backpropagation neural network to invert
atmospheric particle size distribution parameters from
optical data. Smith (1993) first trained a backpropaga-
tion neural network to invert a simple multiple scatter-
ing model to estimate leaf area index from reflectance
at three wavelengths and then subsequently applied the
trained network to satellite observations. He reported
estimated errors of less than 30% and indicated that
the method appeared to be much less sensitive to initial
guesses for the parameters than other inversion tech-
niques. A potential drawback to the technique is the
difficulty of interpreting the network weights, although
Smith (1993) discussed the use of a genetic algorithm
to map the decision boundaries of the inversion.

CONCLUDING REMARKS

Models of varying degree of sophistication describing
most of the known physical mechanisms are available
in the literature. However, research is required in the
area of modeling tree architecture, especially for conif-
erous species, and quantifying spatial heterogeneity at
the landscape level. Further simplification of most mod-
els is required if they are to be utilized in the analysis
of satellite data. The information content of remotely
sensed data may be conceptually ordinated along the
temporal, spatial, spectral and directional (and, polariza-
tion) dimensions. Algorithms must be devised to exploit
the full information content in the signal. The state-of-
the-art is far from satisfactory. In spite of obvious limita-
tions, spectral vegetation indices are still preferable in
the analysis of large spatial scale data sets. The promise
of remote sensing, however, lies in those methods that
utilize physical models and advances in computer sci-
ence and technology.
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