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Abstract 

We use the transport theory to simulate three-dimensional radiation distribution in a vegetation canopy of a small area 
(ca. 0.1-0.3 ha). This theory is based on two contradictory assumptions (Ross, 1981). On the one hand, the model resolution 
have to be so high that input variables for the transport equation can approximate the given forest stand with necessary 
degree of accuracy. On the other hand, the transport theory is based on the assumption that Beer’s law can be locally applied 
to plant canopies that is valid for sufftciently large volumes filled with phytoelements. This sets a limit to the resolution and 
to the predicting accuracy, not only of our model, but also of any other using Beer’s law. The aim of our paper is to estimate 
these limits as a function of input variables. A detailed analysis of input variables (canopy structure, optical properties of 
foliage elements and soil, radiation input at the canopy boundary) and of their effect on the radiative field underlie our 
investigations. A comparison of our three-dimensional simulation results with field measurements is also included in our 
paper, not only to test the model, but also to illustrate the specification of a model resolution and the accuracy of predicted 
radiative field in a real small heterogeneous experimental site. 

The forest albedo is an important ecological variable characterising the forest scattering capacity. To measure this 
variable, two hemispherical sensors are usually mounted above the forest canopy. The fist one records a downward energy 
flux from the atmosphere, and the second, an upward irradiance reflected by the forest. The ratio of their responses is usually 
interpreted as the forest albedo. As an example, the model is used to quantify an inadequacy of this interpretation by 
simulating both the sensor response and the three-dimensional distribution of the radiation reflected, and by comparing these 
results with measurements in the field. 0 1997 Elsevier Science B.V. 
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1. Introduction 

The incoming solar radiation triggers a complicated series of biophysiological, chemical and physical 
processes in a forest canopy. One of the basic phenomena responsible for the processes is the interaction 
between the phytoelements and the radiant energy on these phytoelements. Therefore, to quantitatively and 
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correctly interpret the functioning of forests, it becomes increasingly important to thoroughly understand the 
interacting process of electromagnetic radiation with phytoelements. 

Numerous one-dimensional canopy-radiation models have been developed since the classical model of Monsi 
and Saeki (1953). Most of them are based on the assumption that the forest canopy can be idealised as a 
horizontally homogeneous medium. This idealisation is well justified if the very general (large-scale) aspects of 
forest functioning of sufficiently large plant communities are investigated. For a more precise research of 
microphysiological processes in a given forest, a given tree, and a given time period, this treatment, however, 
may be inadequate. For example, stands with identical vertical foliage distribution, but differing degrees of 
horizontal homogeneity, can have very different radiative regime (Smith, 1993; Stenberg et al., 1994). 

Great efforts have already been made by the radiative transfer community to simulate the transport and 
interaction of electromagnetic radiation in heterogeneous three-dimensional scenes (Norman and Welles, 1983; 
Ross and Marshak, 1984; Li and Strahler, 1986; Goel, 1988; Myneni et al., 1990; Bore1 et al., 1991; Kimes, 
1991). Most of them, however, were aimed at examining the scattering behaviour of various types of vegetation 
and were mainly designed for optical remote sensing of vegetative scenes. The interaction of photons with the 
rough surface of tree crowns and with the soil in between-crown openings is the most important factor causing 
the observed variation in the directional reflectance distribution of plant canopies. On the contrary, the 
within-crown radiative regime is the most important factor determining the functioning of forests. Several 
models allow for internal tree structure and their effect on the within-stand and within-crown radiative regime 
(Oker-Blom and Kellomaki, 1983; Oker-Blom, 1986; Wang and Jarvis, 1990; Nilson, 1992; Stenberg, 1995). 
They, as a rule, are based on the assumption that the foliage distribution obeys some statistical laws that is a 
result of already existing canopy organisation. Knowledge of small-scale features of the radiative field in plant 
canopies, therefore, is needed to better understand the canopy organisation. 

The aim of our paper is to study three-dimensional distribution of photosynthetically active radiation (PAR) 
in a forest of a small area (ca. 0.1-0.3 ha). The development of three-dimensional canopy-radiation models at 
small spatial and temporal scales is essential in achieving a better understanding of the impact of forest 
ecosystems on microprocesses in an individual tree and feedback mechanisms. Their advantages may be a better 
use of environmental resources and governing mechanisms of tree competition for light, and sustainable 
multifunctional forest management. 

Our model is based on the three-dimensional transport equation (Ross, 1981). The radiative field is defined to 
be a solution of this equation in our paper. A computational technique developed in reactor physics for the 
numerical solution of the transport equation (Myneni et al., 1990; Knyazikhin and Marshak, 1991; Ross et al., 
1992) was utilised in our model to resolve the transport equation. Therefore, we begin with a description of the 
radiative transfer process in terms of this equation (Section 2.1). However, we will not discuss either properties 
of the transport equation or methods for its resolving. The aim of this section is only to give precise definitions 
of all variables used in our paper. In computing the radiative field we closely follow the technique by Myneni et 
al. (1991). 

To estimate the forest radiative regime, three important input variables must be carefully formulated (Ross, 
1981). They are: (1) architecture of an individual tree and the entire canopy, (2) optical properties of the 
vegetation elements and soil, and (3) atmospheric conditions that determine the radiation input at the canopy 
boundary. Inaccuracies in these attributes can usually be compensated by averaging the predicted radiative field 
over large spatial and temporal scales. In investigations of small-scale features of the radiative field, such an 
average, however, cannot be usually performed. Inaccuracies in input variables, therefore, can essentially 
influence prediction results in this case. There is another problem encountered in the small-scale canopy-radia- 
tion modelling. The transport equation is based on the assumption that Beer’s law can be locally utilised to 
describe light interaction in plant canopies. However, this law, on the average, holds true for sufficiently great 
volumes filled with phytoelements (Ross, 1981, p. 144; Knyazikhin et al, 1992; Larsen and Kershaw, 1996). 
Two types of inaccuracies, therefore, must be considered to predict the small-scale radiative field in forest 
canopies correctly: the inaccuracies in input variables, and the inaccuracy of prediction capacity of Beer’s law. 
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Increasing the accuracy of input variables does not lead to improving the accuracy of Beer’s law. It sets a limit 
to an applicability range of the transport theory. It is also our aim to estimate this limit. In Section 2.2, we 
introduce a concept of a model quality and of a model resolution to quantify the aforementioned inaccuracies. 
Sections 3-5 focus on the analysis of the accuracy and quality of the input variables and their effect on the 
radiative field in forest canopies of a small area. 

The forest albedo, defined as the ratio of the total solar energy reflected by the forest to the one incident at 
the forest, is an important ecological variable characterising the forest scattering capacity. To measure this 
variable, two hemispherical sensors are usually mounted above the forest canopy. The first one records a 
downward energy flux from the atmosphere, and the second, an upward irradiance reflected by the forest. The 
ratio of their responses is usually interpreted as the forest albedo. In Section 6, we utilise our model to quantify 
an inadequacy of this interpretation by simulating both the sensor response and the three-dimensional 
distribution of the radiation reflected, and by comparing these results with measurements in the field. 

A comparison of our three-dimensional simulation results with field measurements is also a focus of the 
present paper, not only to test the model, but also to specify the quality of input variables required to provide a 
correct simulation of the radiative field in a small heterogeneous forest stand. These results are included in 
Section 3. 

2. Radiation transport 

2.1. Boundary value problem for the transport equation 

We consider a forest canopy consisting of some individual trees. The domain V, in which the trees are 
located is a parallelepiped of dimension X,, Ys and 2,. The height, Z,, of the forest canopy coincides with the 
maximum tree height. The top (6 V,), bottom (S V,) and lateral (6 V,) surfaces of the parallelepiped form the 
canopy boundary, 6 V = 6 V, + S V, + S V,. Note the boundary, 6 V, is excluded from the definition of V. The 
function characterising the radiative field is the monochromatic intensity distribution function, Z,(r,J2), 
depending on wavelength, A (in m), location r = (x, y, z) and direction a. Under condition of the absence of 
polarisation, frequency shifting interaction, and emission processes within the canopy, the monochromatic 
intensity distribution function is given by the steady-state radiative transfer equation (Ross, 1981; Myneni et al., 
1990; Myneni, 1991): 

0. VZ,(r,a) + a(r,fJ)Z,(r,f2) =j--c~~,Jr,W + a)Z,(r,LJ’)dQ (1) 

The position vector r denotes the triplet (x, y,z> with (0 < x <X,), (0 < y < Ys> and (0 < z < Z,> and is 
expressed in Cartesian coordinates with its origin, 0 = (O,O,O), at the top of the forest canopy and the Z axis 
directed down into the forest canopy. The unit vector a N ( E.L,~) has an azimuthal angle $J measured in the 
(XY) plane from the positive X axis in a counterclockwise fashion and a polar angle 8 = cos /L with respect to 
the polar axis that is opposite to the Z axis. fl- VZ,(r, L4) is a derivative at r along the direction 0. 

The function rr(r, JZ ) (in m-’ > is the total interaction cross-section (and it does not depend on wavelength!) 
and os h(r,O’ -+ 0) the differential scattering cross-section for scattering from the direction 0’ into a 
differential solid angle about J2 at r, (in m-l sr- ‘1. In the canopy transport theory, these coefficients are 
defined as (Ross, 1981; Myneni, 1991): 
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cr&,W+ a> = uI.(r);qr,nt -+ a>, (3) 

1 
r,(r,W + a) = - 

/ 2 2%-f 
g,(r,n,)19’.a,ly,,,(r,n,,nr~~)d~2,, (4 

where u,(r) (in m-’ ) is the leaf area density distribution function; G(r, 0) (dimensionless) is the mean 
projection of leaf normals at r onto a plane perpendicular to the direction 0; g,(r,&) is the probability 
density of the leaf’s normal distribution over the upper hemisphere 27rf; ~~,~(r,&, JZ’ + 0) (in sr-i) is the 
leaf scattering phase function and r, is the area scattering phase function (Ross, 1981). The precise description 
of these variables can be found in the literature (Ross, 1981; Myneni, 1991; Myneni et al., 1991). In our paper 
we closely follow the formulation of the above mentioned variables by Myneni et al., 1991. 

Eq. (1) alone does not provide a full description of the transport process. It is necessary to specify the 
incident radiance at the canopy boundary, 6 V, i.e., specification of the boundary conditions. Because our forest 
canopy adjoins the atmosphere, a neighbouring forest and the soil having different reflection properties, the 
following boundary conditions will be used in our model to describe the incoming radiation (Ross et al., 1992): 

r,EsV,,a*n,<o, (6) 

where Td h and T, h are intensities of the diffuse and the monodirectional components of solar radiation incident 
at the tdp surface of the forest boundary, SV,; a,, N ( Z_L,,,+,,) is the direction of the monodirectional solar 
component; 6 is the Dirac delta function; L,,,(r,) is the intensity of photons in the monodirectional solar 
radiation arriving at a point r, E S V, on the lateral surface, S V,, along a, without experiencing a collision 
with neighbouring forest; L,,, is the intensity of diffuse radiation penetrating through the lateral surface, S V,, in 
the stand; ph,i and oA,b (in sr-l ) are the bidirectional reflectance factors of the lateral and the bottom surfaces; 
n,, ~ti and n,, are the outward normals at points rl E 6 V,, r, E 6 V, and rb E 6 V,. 

We represent the solution of Eq. (1) as the sum of two components (Ross et al., 1992), viz. Z,(r,fl) = 
Zm,*(r, 0) + Zd,A(~, 9 ), where Z,,,, and Id,* are the intensities of direct (monodirectional) and diffuse radiation, 
respectively. The intensity of direct solar radiation is Z,,,(r,fl) = Q0,A(r)8(a - a,,), where Q,,*(r) is the 
probability density that a photon in the direct solar radiation will arrive at r along a, without experiencing a 
collision (Myneni, 1991; Knyazikhin et al., 1994), and it may be expressed as: 

Q,,,(r) =B~,A(r-Z[r,&,]JJ,,)exp( -~‘r’~ol~(~-~~~,n~)d~) 

Here B,.,(r) is the function defined on the canopy boundary, 6 If, as: 

( L,*(r) 9 if r E SV,, 

Bm,*(r) = L,,,(r), ifrE SV,, 

0, if rE SV, 
(9) 
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that may be interpreted as the intensity of direct solar radiation penetrating through the boundary, 6 V, + S V,, 
into the forest; Z[r, an] denotes the distance between the point r and the forest boundary along the direction 
- fl (i.e., the point r - Z[r,n ]a belongs to the canopy boundary SV). 

The intensity of diffuse radiation satisfies the integro-differential equation in V 

and the boundary conditions on the forest boundary SV: 

I,jh(rt’Ln) = T,,,(r,Jq, rt E sv,,a-n, < 0, (11) 

~)Q,,,(‘~)l~,.n,lH(~,.n,),r,E~V,,~.nn,<O (12) 

&,,(@W =~~,,n~>o~~,a(~f~~)~~,~~~~~~~~~~'.nb~d~'+~~,~(~o~~)~~o.nblQo,~(r~). 

r,E6Vb,d2-nn,<0 (13) 

where H(a) is the IIeaviside function whose value is 1 if a > 0, and 0 otherwise. 

(in 
In radiation measurements, it is also conventional to use the photon intensity distribution function, Zh,r(r, an> 
mol me3 s- ’ sr- l ), instead of the intensity distribution function, Zh(r, an) (in W mV3 sr-‘>. They are 

related by Zh(r, 0) == (hc/A)N,Z&,a> where k/A is the energy of one photon (in J>; h = 6.626176 - 1O-34 
J s (Blanch’s constant); c = 2.99792458 * lo8 m s-l (the vacuum speed of light); and NA = 6.02205 - 10z3 
mol-’ (Avogadro’s constant). Eqs. (11, (5)-(7) 
expressed in mol rnd3 s-l sr- 

are also valid for the photon intensity, Z,,r(r,fl), but its unit is 
‘. Because some of our measuring equipments register the radiation fluxes in 

pm01 m-* s- ‘, the symbol Z,(r,a) will denote, depending on the situation, the photon intensity or the 
intensity distribution function in our paper. We will also use ‘radiation intensity’, referring it to Z*,r(r, 0) or 
Z,(r,a>. 

2.2. Spatial and angular discretization; quality of input and output data 

We approximate the angular dependence by discretizing the angular variable 0 into a finite number of 
discrete directions. The angular-dependent variables, therefore, can take on a finite number of values in our 
model. Such an approach is known in the literature as the discrete ordinate method (Bass et al., 1986; Myneni et 
al., 1991) and has tbe following interpretation: photons are restricted to travel only along a finite number of 
discrete directions. We use the Carlson quadrature rule over the unit sphere with equal weights (Carlson, 1970) 
to generate such directions. 

To approximate the spatial variable, we introduce a fine-spatial mesh by dividing V into fine cells Pi,j,k of 
cell volume AxA ybz, Ax = X,/N,, A y = Y,/N,, AZ = Z,/N,: 

Pi,j,k = ( (x,y,z)l( i - l)A x<x<iAx;(j- l)Ay<y<jAy;(k- l)Az~z<kAz}, i= 1,2,...,N,; 

j= 1,2 ,.. .,N,,k= 1,2 ,..., N,. (14) 

All quantities occurring in the transport problem are assumed to be piecewise constant with respect to the spatial 
variable and can take new values only at the cell boundaries, which are usually mean values of these quantities 
over the cell volume. 
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Predicted radiation in one cell can greatly differ from the measured one due to mistakes in input data. 
Because the transport equation assumes an energy balance for any elementary volume, some other cells in the 
neighbourhood may exist to compensate for this difference. So the mean predicted flux over cells from this 
neighbourhood will, much better, agree with the mean measured fluxes over the same neighbourhood. 
Therefore, we introduce a P-volume model accuracy as follows. We define a domain P (e.g., geometrical 
figure like a sphere or a parallelepiped) of a given size. The P-volume model accuracy at space point r is an 
accuracy of mean predicted quantities obtained by averaging over r + P = {r’lr = r + p,p E P} around the 
point r (the integral of the predicted quantity over r + P divided by the volume of P). 

Our definition of the model accuracy depends on the choice of P: various P’s can provide various volume 
model accuracies. A domain P which provides an acceptable P-volume accuracy is defined to be the P-model 
quality. We say that a model has an ideal quality if any P is the P-model quality. We will carry out in detail the 
quality analysis of our model in Section 3. 

The volume model accuracy depends, to a great degree, on the number of tine cells in P. To quantify this 
property we introduce a model resolution as the ratio between the total amount of cells in V and its volume, i.e., 

N, Ny N, 1 
A=-= 

xs ys Zs AxAyAz ’ 

in fine cells/m3. 
Thus, we use two attributes to describe the model accuracy. They are the P-model quality and the model 

resolution. The domain P defines the neighbourhood of each space point r, i.e., we consider both the space 
point and the space around this point limited by P. The resolution, A, determines the number of fine cells in P 
around a space point r, which influences the mean predicted quantities over P around the space point. In 
analogy to the way it was done above, we define the P-volume accuracy and the P-quality for input variables 
(2)-(4). We say that an input variable is ideally exact if any P provides an acceptable volume accuracy. 

In linear transport theory, the accuracy in the numerical solution of the transport Eq. (1) increases linearly 
with the increase in the resolution of input data (Germogenova, 1986). This is a logical consequence of one of 
the basic assumptions of this theory: the number of scattering centres (e.g., number of leaves) in an elementary 
volume (in a fine cell) is proportional to this volume. This property holds true for a wide range of data 
resolution in nuclear and atmospheric physics problems. Theoretically, we can achieve the ideal model quality 
in this case by decreasing the size of P, and by increasing the model resolution. In computing the canopy 
radiative regime, this assumption, however, loses its validity (Ross, 1981) when data resolution becomes 
comparable with the size of phytoelements. Moreover, the relation between the elementary volume and the 
number of scattering centres in it becomes nonlinear (Zeide and pfeifer, 1991; Vedyushkin, 1995). It sets a limit 
to the model resolution: after exceeding a critical resolution, instabilities in the numerical solution of the 
transport equation arise (Kranigk, 1996). Therefore, the choice of the model resolution needs special attention 
(Ross, 1981). On the one hand, the model resolution has to be so high that the input variables can approximate 
the given forest stand with the necessary degree of accuracy. On the other hand, it should not exceed a critical 
value. An appropriate model resolution will be specified by comparing simulation results with field measure- 
ments in Section 3. 

3. Canopy structure 

3.1. Leaf area density 

The leaf area density distribution function is an important structural characteristic for a forest canopy that 
influences in a high degree of the radiative field in the vegetation. This function can be simulated once the 
architecture of individual trees and their distribution on the ground are available. Therefore, the problem of 
describing the leaf distribution in the forest space may be reduced to modelling the architecture of individual 
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tree. Three-dimensional models that take into account various features of tree architecture have been a highly 
active research field in recent years (Borel-Donohue, 1988; de Reffye et al., 1991; Kranigk and Gravenhorst, 
1993; Kranigk et al., 1994; Kurth, 1994) and they have already been incorporated with radiation models 
(Borel-Donohue, 1988; Myneni et al., 1991; Knyazikhin et al., 1996; Kranigk, 1996). Although our approach 
can simulate the complicated three-dimensional heterogeneity of a natural forest canopy (Knyazikhin et al., 
1996), we will analyse models of forest structure that considers only the tree shape and vertical distribution of 
foliage elements within each individual tree. Such models are still widely used and it is the aim of this paper to 
specify their quality, accuracy and the range of their applicability. 

A coniferous (Picea abies CL.) Karst) stand in Solling ca. 50 km Northwest of Gijttingen, Germany, was 
chosen for simulation (‘Fl Fllche’, 52.77”N, 958”E). This forest is about 110 yrs old. A site covering an area 
of 25 X 30 m2 was selected for our investigation. There were 35 trees in the sample stand (corresponding to a 
tree density of 467 trees/ha). The trees are, on the average, 29 m in height with the crown height of about 11 
m. Thus, V, where the trees are located, is the parallelepiped of dimensions X, = 25 m, Ys = 30 m and 2, = 29 
m. The coordinate system is aligned such that the angle between the positive X axis and the direction to the 
north is 75”. The projection of the tree crowns is shown in Fig. 1. A coniferous one-year shoot of size 5-7 cm 
with needles was considered to be the basic foliage element in our model. 

The vertical density distribution of the projected needle area per unit ground area for individual trees as it 
was derived from measurements (Ellenberg et al., 1986) can be well approximated by a modified Raleigh 
distribution function (Constantin, 1993): 

%Z( z) = & (15) 
c c 

//uJ x,y,z)dxdy = iz:exp( -azr), z, = f , z I I,, 
Z 

where L is the leaf area index of our sample stand; a is a normalisation factor (in m) derived from averaging the 
variation in the vertical leaf area distribution of individual trees; (Y is the dimensionless parameter determining 

10 20 

X meter 
Fig. 1. Spatial distribution of crown projections in the sample spruce stand. The coordinate system is aligned such that the angle between the 
positive X axis and the direction to the north is 75”. Tree stems are numbered. The location of the 50 m-tall tower and the sensor’s pathway 
are shown as shaded square and elongated rectangle. The cross symbols denote the vertexes of 10 X 10-m grids. 



222 Y. Knyazikhin et al. /Agricultural and Forest Meteorology 88 (1997) 215-239 

the shape of the curve (Eq. (15)) (Constantin, 1993) and 1, is the height of the tree crown. The integration in 
Eq. (15) is performed over the horizontal plane at the depth z. 

We replace the crown projection of each individual tree by a rectangle of minimal dimension 2X, and 2Yc 
with its centre at (X,,,Y,, Zs), which covers the crown projection. The sides of these rectangles are parallel to 
the X and Y axes. The point (X0, Y,, , Z, > is taken as the tree trunk coordinate, and 2 Xc and 2 Yc are the length 
and the width of the tree crown, respectively. We approximate the horizontal distribution of foliage elements in 
the tree crown by the quadratic expression along the X and Y coordinates (Ross, 1981; Myneni, 1991): 

lQx( x) = 1.5 1 - ( (yJ), Ix-xol~xc, 

ULJ y) = 1.5 1 - ( (i;;y”)2),,y-Yol~Yc, 

Thus, given the tree trunk distribution, (X0, Ya, Zs), as well as the dimension of trees, (2 Xc, 2Yc), it is possible 
to simulate the leaf area density function by 

(16) 

if Ix-X,l<Xc, ly-Y,I<Yc,O<z<Z,,andby u,(x,y,z)=Ootherwise. 
We impose a fine spatial mesh (Eq. (14)) of a resolution A on the sample stand and the leaf area density in 

each of the fine cells is evaluated by averaging the leaf area density function (Eq. (16)) over the fine cell. The 
leaf area density of a domain obtained due to intersection of trees is the sum of the leaf area densities of the 
intersecting trees. As a result of this discretization, we have approximated the leaf area density function (Eq. 
(16)) by a piecewise constant function uL( A; x, y, z) with respect to the spatial variable r = (x, y, z) that is input 
for the transport equation. The accuracy of this approximation depends on the resolution A: the larger A, the 

(x,,Y,,Z,) 

Fig. 2. Schematic representation of tree canopies. The tree crown is covered by parallelepipeds of dimension 2 XC, 2 Yc and AH, which are 
obtained by shifting the parallelogram P(A H) along the vector rk_ ,,*. 
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more accurate U& A;x,y,z) approximates Eq. (16). The leaf area density function (Eq. (16)), however, simulates 
the forest structure with a certain degree of accuracy. 

Before examining the quality of the leaf area density function u,( A;x, y,z), let us analyse as to how the 
vertical distribution of leaf area (Eq. (15)) for an individual tree was derived from measurements. An ideal 
experiment may be as follows. One splits the tree crown into horizontal layers by planes zk = kh H, 
k = 0,1,2,. . . , M,, AH = ZJM, (Fig. 2) and then bounds it vertically by the planes x = X0 T Xc, y = Y,, T Yc. 
As a result, the tree crown is enclosed by the parallelepipeds of dimension 2 Xc, 2 Yc and AH. Evaluating the 
amount of foliage area in every parallelepiped, one obtains a histogram of the vertical density distribution of leaf 
area per unit ground area as: 

U z) = rH2; 2y 
, (k- l)AH<z<kAH,k= 1,2 ,..., M, (17) 

c c 
where S, is the area of foliage elements in the parallelepiped ~~...i,~ + P(AH); rk_ 1,2 = (X,,Y,,, z~_~,~); 
zk_ 1,2 = kA H - AH/2 and P(A H) is a parallelepiped of dimension 2X,, 2Yc and AH, i.e., P(A H) = ((x,y,z) 
: I xl < Xc, I yI < Yc, I ZI < A H/2 1. The histogram (Eq, (17)) is then approximated by the Raleigh distribution 
function (Eq. (1.5)) (Constantin, 1993). 

In the above analyses, the parallelepiped, P(AH), has the following property: the leaf area in a fine cell, 
u,( A;x, y,z)A XA yA z, can greatly differ from the real one; the mean leaf area over P(A HI, however, 
coincides with the real value within an accuracy provided by the measurements. Therefore, our leaf area density 
function, uL( A;x, y, z), has P quality and its accuracy can be characterised by the P-volume accuracy. Here P 
is a parallelepiped whose faces are parallel to the XY, YZ and XZ planes. It may be shown that the solution of 
Eq. (10) maintains the P-quality and its P-volume accuracy cannot be better than the P-volume accuracy of the 
input data. A strict mathematical argument of this is a topic of a special investigation, involving the technique of 
functional analysis; therefore, we shall leave it for a detailed analysis at a later time i. 

3.2. Model resolution 

We evaluate an appropriate resolution from the following experiment. We calculate the mean energy flux 
over a parallelepiped, P, as a function of the resolution, A, by using the radiation model, then compare the 
values of this function with the mean measured flux averaged over the same parallelepiped. Thus, we can find a 
resolution that provides a minimal disagreement between simulated and measured fluxes. This resolution will be 
taken as the model resolution needed for simulating the radiative field in our sample stand. 

The sample stand described above was chosen to realise our experiment. The length I,, of the tree crown is 
suggested to be constant in our calculation: E, = 11 m. The leaf area index, L = 7.4 (Ibrom, 1993). Parameters a 
and IY in Eq. (15) were 0.15 and 5.7, respectively. The leaf normal distribution was given by a spherical 
distribution in all our calculations, i.e., g,(r, a> = 1. Models for simulating the boundary conditions and optical 
properties of the soil and the leaves as they will be described in the next sections are used in our calculations. 

A moving LICOR quantum sensor that measures the quanta between 400-700 nm was installed 2 m above 
the ground on a horizontal support. The 10-m path of the sensor is shown in Fig. 1. The downward PAR flux (in 
pm01 m-* s-l) was measured by this moving sensor so that the mean l-h measured flux corresponds to the 
mean flux averaged over the sensor’s path and l-h time interval. In addition, four sensors were mounted 10 m 
above our forest canopy at the height of 39 m to measure incident global (diffuse plus direct) PAR (in pmol 
mm2 s-l), diffuse and global (diffuse plus direct) short-wave fluxes (in W mw2), as well as PAR-radiation (in 

The P-quality and the P-volume accuracy can be described in terms of the theory of functional analysis. Really, introducing the metric 
by llfllr = s~p,(~,+~~fcr’>~r’> we generate the Banach space of functions which have the P-quality. Mathematical investigations of the 
transport equation statt usually with establishing the following fact: if input variables belong to a Banach space then the solution of the 
transport equation is also an element of the same Banach space (Vladimirov, 1963; Germogenova, 1986; Ross et al., 1992; Vainikko, 1993). 
It means that the solution of the transport equation maintains the quality of input data. 
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pm01 m-’ s-l ) reflected by the forest. The measured incident radiation fluxes serve as the input for model 
calculation (see Section 5). An overcast sky (3 October 1994) was chosen to carry out the experiment. 

According to our calculations (some of them will be presented in Section 3.31, the sensor’s path can be taken 
as representative for the site, 

Sa={(x,y):Ix- 12117m,ly- 14.51I9.5m}, 

covering an area of 14 X 19 m2 around the point r = (12 m, 14.5 m, 27 m). Therefore, the parallelepiped, 
P(Ad = Kx,y,z>: I xl I 7 m, I y I I 9.5 m, I zI I A z/2 }, of dimension 14 x 19 x A z was chosen to specify the 
model resolution. Its height, AZ, is a variable in our calculation and is equal to the height of the fine cell. 
Because the solution of the transport equation was assumed to be constant within a fine cell, the mean radiation 
intensity over P(Az) coincides with the mean radiation intensity over a horizontal surface of area 14 X 19 m*. 
A diurnal variation with l-h time step of mean downward flux over the surface S, about the point r = (12 m, 
14.5 m, 27 m) as a function of the model resolution, A, was calculated by using our model as: 

M,( AJ) = ’ ( 
u( f’(W) P(Az) 

drj4:;2hjzn+dflZA( A,t;r,a)lfl*nl. (18) 

Here u(P(A z>> denotes the volume of P(A z); I,( A,t;r, 0) is the radiation intensity at a time t and 
corresponding the resolution, A; n is the normal to a horizontal surface. 

Fig. 3 shows the dependence of the simulated mean diurnal variation, M,( A,t) on the model resolution A. 
The measured moving sensor response is plotted in this figure also. To characterise the difference between 
measured and simulated results, we use the following function of resolution A: 

/ 
‘*IM( t) - M,( A,t)ldt 

A(A)=lOO%x ‘I 

/ “M( t)dt 
Tl 

(19) 

where Tl and T, are the time of the sunrise and sunset, respectively; M(t) is the measured value of the moving 
sensor response averaged over a l-h time interval and the sensor’s path way. This function took on the 
following values in calculations presented in Fig. 3: 6(l) = 50.6%; 6(4) = 44.2%; 6(8) = 20.5%. The model 
resolution of 8 fine-cells/m3 will be used in all our calculation presented in this paper. 

Fig. 3. Measured (legend ‘M(t)‘) and simulated diurnal variations of mean downward fluxes (in pmol m-’ s- ‘1 averaged over the surface 
S, (EZq. (17)) about the point r = (12 m, 14.5 m, 27 m) for different values of the model resolution: A = l/(1 X 1 X 1) = 1, 1/(0.5X 0.5 X 1) 
= 4 and l/(0.5 X 0.5 X 0.5) = 8. 



Y. Knyazikhin et al. /Agricultural and Forest Meteorology 88 (1997) 215-239 225 

3.3. Model accuracy 

Let us consider parallelepipeds P,,,JAz) = S14,i X AZ and P,,,JAz) = Sizi X AZ (i = 1,2,3), of the height 
AZ = 0.5 m and with bases: & = { (x,y): 14 IX I 24; i I y s (i + 1) 1, i = 1,2,3; S,,,j = { (x,y): 12 IX I 22; 
i<y< (i+ l)}, iz= 1,2,3. 

The area of each surface is 10 m*. To describe the model accuracy, we examine the space variations of mean 
fluxes over these parallelepipeds. Let Ms,,4,i (t) and MS ,* $t) be diurnal variations of mean downward fluxes 
over the surfaces S,,,,i and S,2,i evaluated from Eq. (lb)’ in which the parallelepiped P(A z) is replaced by 
P,, i(A z) and P12,i correspondingly. 

Pig. 4 demonstrates the behaviour of MS,14,i(t) and MS,12,i(t) as well as of M,( A,t) for a cloudy day (3 
October 1994). The variations in these fluxes are caused by a variation of a surface covering an area 10 m* in 
space about the sensor’s path way. The curve MS,+,* (t) is closest to the measured value of the moving sensor 
response, M(t), and the surface S,,,, is closest to the sensor’s path. It allows us to suggest that 8 fine cells/m3 
are needed to simulate the diurnal variation of mean PAR fluxes over horizontal surfaces of the size about 10 
m* with the accuracy of about 80%. The behaviour of MS,14,2(t) and of the sensor response, M(t), during the 
clear sky plotted in Pig. 5 may also serve as an argument to confii this suggestion (S(8) = 18.2% in this case). 
Comparing MS,14,2(t)r MS,14,3(t) and M( A,t), one can conclude that the sensor’s path way may be taken as 
representative for the whole site, Sa. 

Thus, our leaf area distribution function has ‘parallelepiped’ quality. The base of the parallelepiped is parallel 
to the XY plane. A solution of the transport equation maintains the quality of input data, i.e., the mean flux over 
the parallelepiped can provide an acceptable accuracy only. If its height tends to zero, the parallelepiped 
degenerates into a horizontal surface. This property highlights a range of applications of such models-the 
evaluation of mean radiation intensities over horizontal surfaces. Remote sensing problems, for example, require 
such an information to interpret the radiation field reflected by vegetation canopies. In photosynthesis research, 
this quality of input data, however, may lead to a false quantification of this process. The canopy photosynthesis 
results from the interaction between the photosynthetic response of foliage elements and the radiation incident at 
these elements. Therefore, input data must possess more various qualities in order to estimate the radiation 
fluxes over the surfaces of different inclinations correctly. 

Fig. 4. Diurnal variation of mean downward fluxes (in pmol mm2 s- ‘) averaged over different surfaces, S,z,i (legend ‘S12i’) and S14,i 
(legend ‘S14i’), i = 1,2, 3, of an area 10 m*. The sensor response (legend ‘M(t)‘) and the mean downward flux over the surface Sa (legend 
‘M,( A,t)‘) are plotted also. 
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Fig. 5. Measured (legend ‘M(t)‘) and modelled (legend ‘MS(t)‘) diurnal variations of mean downward fluxes (in pmol m-* s- ‘) averaged 
over the surface S, on a clear sunny day (15 October 1994). 

3.4. Basic foliage element 

Fine spatial cells introduced by Eq. (14) are considered the elementary volumes in our model. Different cells 
may have different properties that are mean values of scattering and geometrical properties of chosen foliage 
elements in the cell. Their specification, therefore, depends on which foliage elements are referred to. A 
coniferous one-year shoot of size 5-7 cm with needles was taken as the basic foliage element in the present 
paper. In Section 6 we will discuss the spectral reflection and transmittance of our basic foliage element. In 
addition, a description of their geometrical properties is required to quantify the optical property (the total 
interaction and differential scattering cross-sections) of an elementary volume. The leaf area density function is 
used to parameterize the foliage geometry in our approach. Its value depends on how the ‘area of the one-year 
shoot’ is determined. The projected needle area (Smolander et al., 1994) has commonly been considered to 
quantify a one-side area of nonflat leaves (needles). Although the one-year shoot was taken as the basic foliage 
element and its optical properties are the basis of our simulation, the meaning of the one-year shoot area has not 
been clarified by the above discussions. Really, parameters for the modified Raleigh distribution function (Eq. 
(15)) were derived by averaging the vertical distribution of total needle area of individual trees (Constantin, 
1993). It may dilute shoot architecture properties. The constant ratio, S = 2.74, between total and projected 
needle area (Riederer et al., 1988) was then used in our model to convert the distribution of total needle area to 
the projected one. This ratio, however, may vary within tree crowns. Our model of the leaf scattering phase 
function (see Section 4) does not account for the shoot architecture (Ross et al., 1994). Thus, we cannot assert 
that the total interaction and differential scattering cross-sections were derived from our basic foliage element. 

As a result of the discretization, the leaf area density function, u,(x,y,z) (Eq. (16)) was replaced by a 
piecewise constant function, u( A,x, y,z) which then was used in our calculations. This function depends now 
on A, and is equal to the original one only if A tends to infinity, i.e., u,(m;x, y,z) = U&X, y,z). By varying A, 
it is possible to change the leaf area density function in a certain range. We specify the model resolution by 
solving the following inverse problem: find A for which the difference, 6(A) (Eq. (19)), between measured and 
simulated results takes on a minimal value. In spite of the uncertainty in defining a one-year shoot area, it is, 
therefore, possible to use the function u~( A,x, y,z) for modelling the leaf area distribution by choosing an 
appropriate model resolution. The model resolution depends, in its turn, on an overall accuracy of all input data. 
The effect of the model resolution on the leaf area density function can be seen, for example, when we evaluate 
the leaf area indexes for our sample stand, LA1 and LAI,, evaluated from u,(x, y, z) and uL( A, x, y, z): 
LAI = 6.06; LAI, = 5.57 (A = 8). Note that such an approach is widely used in numerical solution of ill-posed 
problems (Tikhonov and Arsenin, 1979). This technique, however, may lead to systematic errors that were 
observed in our calculations. 
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4. Optical properties of the foliage 

We distinguish two types of scattering: a photon can either be specularly reflected at the surface of the 
foliage element or can undergo multiple interactions inside the foliage element before leaving it. Therefore, the 
leaf scattering phase function, yL A( r, a,, 0’ + a>, consists of two parts, the specular and the diffuse 
contributions (Myneni, 1991; Knyakhin and Marshak, 1991; Myneni et al., 1991): 

3/&&,fl’-+ q = ‘ys(‘,q?~‘-‘q + Yn,*(r,&,JJ’+ q 

The specular reflection is supposed to be independent on wavelength. A model for the specular reflection 
proposed by Vanderbilt and Grant (1985) is incorporated into our model: 

‘ys(‘JzJ2’ -+ 0) = K( K,cr’)F(u,(Y)qa4J*) 

where (Y’ is the angle between the incident ray a’, and the leaf normal a,; F(v,a’) is the Fresnel reflectance 
(averaged over the polarisation states); K(K,~‘) defines the correction factor for specular reflection; it is the 
wax refraction index; K is the smoothness of the leaf surface and 0 * is the direction of specular reflection. 
The correction factor, K( K, a’) = exp( - K tan1 &I), proposed by Ross et al. (1992) was used in our calculations. 
Parameters K and v were 0 and 1.5, respectively. For more details of these results, the reader may consult 
Myneni (1990, Myneni et al. (1991) and Ross et al. (1992). 

The leaf scattering phase function for the diffuse distribution is supposed bi-Lambertian (Ross and Nilson, 
1968), i.e., a fraction of the energy intercepted by the foliage element may be reflected or transmitted in a cosine 
distribution about the leaf normal, i.e., 

YD,h(r,J&,L(E’ + 0) = 
i 

71.-1rD,A(r)If2~12n,I, (d2*dQ(LJ’-J2n,) CO, 

7f-1t,,,(r)ld2-f2,1, (i2~l2,)(f2’~0,) >O . 

Here rD,* and tnh are the spectral reflection and the spectral transmittance of the leaf element, and they 
depend on wavelength. We define the spectral scattering coefficient, d,,(r), as 

that is a fraction of the intercepted energy diffusely reflected by the one-year shoot. This variable influences in a 
high degree the radiative regime in the vegetation. It may be shown that d,(r) = rD,*(r) + t,,,(r) (Knyazikhin 
and Marshak, 1991). 

A measurement programme accompanied our model development to derive a spatial distribution of rD,*(r) 
and tDIA(r). A coniferous one-year shoot of size 5-7 cm was considered the basic foliage element. Three 
characteristics of the one-year shoot were chosen to experimentally examine the spatial variation of foliage 
spectral properties. These are (1) age of needles on the one-year shoot; (2) position within the tree crown (upper, 
two middle and lower parts) and (3) geographical orientation with respect to the tree stem (south, north, east and 
west). The LI- 1800,122 portable spectroradiometer with the external integrating sphere (LI-1800-12 S) device 
was used to measure the spectral reflection and transmittance of one-year shoots in the region from 300 to 1100 
nm with the spectral step of 1 nm. Our experiment was carried out in September, i.e., at the end of the 
vegetation season, when the needles of the current year are already formed. Fig. 6 shows an example of the 
sensitivity of the one-year shoot spectral reflection to each of these chosen attributes. One can see that the 
optical properties of these one-year shoots depend both on wavelength and the one-year shoot position in space. 
The spectral scattering coefficient, d,(r), varies from its mean value over the spectral range and over the 
one-year shoot attributes, on the average, by 33%. If, however, we compare the spectral scattering coefficients 
with its mean spectral variations taken over one-year shoot attributes, then the deviation is, on the average, 12% 
only, not exceeding our measurement mistake in the spectral transmittance. Therefore, the mean of the one-year 
shoot spectral transmittance coefficient and the mean reflection coefficient averaged over all one-year shoot 
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Fig. 6. The spectral reflection of spruce one-year shoots derived from measurements. Three characteristics of the one-year shoots were 
chosen to examine the spatial variations of foliage spectral properties, age of needles on the one-year shoot; position within the tree crown 
(upper, two middle and lower); and geographical orientation with respect to the tree stem (south, north, east and west). The mean reflection 
taken over spatial and spectral variables is 6%. 

attributes introduced above were taken as rn A and t,,, in our calculations, i.e., we ignore in our calculations 
the spatial variation of foliage optical properties but consider its spectral variation. 

5. Boundary conditions 

The solar radiation penetrating through the canopy boundary, S V, determine the radiative field in a forest 
canopy. The boundary conditions for a three-dimensional canopy are also three-dimensional: the incoming 
radiation at the top (atmospheric, SV,) and at the bottom (soil, 6V,,), as well as at the lateral (neighbouring 
canopy, SV,) surfaces are different. The spectral composition of the incoming radiation also infhrences the 
radiative regime in a forest canopy: photons having different wavelength interact with phytoelements differently 
(Section 4). The aim of this section is to simulate the spatial, spectral and angular distribution of the incoming 
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solar radiation, also to parameterize them in terms of the radiance energy received by a horizontal unit surface 
above the forest canopy-diffuse and global short-wave radiation, and global PAR radiation, which are usually 
known from radiation measurements. 

5.1. Input variables and separation of direct beam of solar radiation 

We denote by R,, R, and R, the energy fluxes per horizontal surface above the forest canopy of the global 
PAR, diffuse short-wave and global short-wave radiation. In terms of the notations introduced by Eqs. (5) and 
(6) these variables may be expressed as: 

(20) 

where n, is the outward normal at point rt E 6 Vt; R,,, and R,, are PAR fluxes generated by the diffuse and 
the monodirectional components of solar radiation, i.e., 

We assume that &,, R, and R, do not depend on rt E 6 V, at a given instant of time. Because we simulate 
the radiative field in a forest canopy of a small area, tbis suggestion is realistic even in a case when the 
incoming radiation is influenced by broken clouds. Three sensors were mounted 10 m above our sample stand at 
the height 39 m to continuously measure R,, R, and R,. These variables are inputs for our model. 

From our description of the radiation transport (Eqs. (8)-(13)) it follows that we require q,h(J2) and T,,*(r) 
to specify the radiation incident at the top surface of the canopy. The problem now is to deduce this information 
from R,, R, and R,. We start with separating R,,,, and R,,, from the total PAR flux, using the following 
result (Spitters et al., 1986): the ratio between the incident diffuse and global PAR fluxes is 1.4 times larger than 
the same ratio for the short-wave solar radiation, i.e., R,,/R, = 1.4(R,/R,). Thus, given a known energy flux 
per horizontal surface above the forest canopy of the global PAR, the diffuse short-wave and the global 
short-wave radiation, it is possible to separate the incident as direct, Rp,,,, and diffuse, R,,,, fluxes from the 
global PAR irradiance, R,: 

R p,d = 1.4ZR,, 
s 

R p,,,,=Rp-Rp,d= 

5.2. Spectral composition of the incoming radiation 

The spectral composition of solar radiation at the earth’s surface depends on the atmospheric conditions and 
may vary largely throughout the day. These variations are mainly influenced by the sun’s path, by atmospheric 
transparency conditions, and by clouds. In spite of these variations, however, normalised energy distribution 
curves of the direct solar beam in the visible region at the earth’s surface corresponding to various atmospheric 
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conditions and the solar zenith distances were found to be close to a normalised curve of the blackbody 
emission spectrum at T = 5200 K (Kondratyev, 1969, p. 230). A radiant flux value at h = 560 nm can be used 
as a normalisation factor (Kondratyev, 1969, p. 230). This assumption is used in our approach to deduce the 
spectral composition, Tm,*(rt), from the direct PAR beam. 

Let E,(T) be the Planck function. The probability density, p(h), that a photon in the direct solar radiation at 
the earth’s surface falls in a spectral interval (h, A + dh), can be expressed as: 

P(h) = 
E*( 5200 K) 

/ 7oo nmEh( 5200 K) ’ 
400 nm 

Thus, given a known the total flux of photons, R,, (in pmol m-* s -‘I, it is possible to evaluate the spectral 
composition of the direct solar beam as T, h(rt) = p(h) R,,,. 

As it was mentioned in Section 2 the radiation intensity, Z,(r, LJ ) can be expressed via the sum of the direct, 
Z,,,*(r,Ln), and the diffuse, Zd,*(r, A&), radiation intensities. The second addend, in its turn, can also be 
represented by the sum of two components, viz. 

Z,,,(r,fl> =Z,‘,,(r,fl) +Z&(r,a). (22) 

The first component is the radiation intensity results from interaction of the incoming diffuse radiation with 
the forest canopy. It satisfies Eqs. (lo)-(13) in which Q,,,(r) = 0 and ph., = ph,b = 0. The second component, 
Z&(r,i2), describes the rest radiative field. It satisfies an equation obtained from substituting Eq. (22) in Eqs. 
(lO)-(13). 

I:,*( r, 0) depends on the diffuse radiation only. In the photosynthetically active region of the solar spectrum, 
leaves are usually absorbed 85-90% of intercepted radiation. A contribution of the multiscattered photons to the 
radiative field makes up lo-15% (Knyazikhin and Marshak, 1991). Thus, neglecting multiplied scattered 
photons does not reduce the accuracy of our calculations. Therefore, Z&(r, J2 ) can be approximated reasonably 
well by single scattering radiation, J,,,,(r, J2 >, i.e., Z&(r, d2 > = .I: h(r, 0 >. In terms of mathematical symbols it 
means that we ignore the integral term in Eq. (10) to specify the single scattering radiation (Ross et al., 1992), 
i.e., .Z&<r,l2) satisfies Eqs. (lo)-(13) in which os,* = 0, Qo,n(r) = 0 and pA,, = ph,b = 0. Integrating these 
equations with respect to h over the spectral interval 400-700 nm, we obtain equations for the radiation 
intensity, J,(r,fJ> = /300 nm d,h ‘O” “IIJ .I1 (r, JZ )dh, of single scattered photosynthetically active radiation: 

0. VJ,(r,fJ) + c7(r,L4)Jp(r,d2) =O, 

JphW = 100nm 700nmld,h(rlr~)dh =L,,,(r,,a), rl E 6V,,fl.n, CO, 

Jp(rb,O) =0, rb E 6VbL2.n, <O 

(23) 

It follows from these equations that Jr depends on Td,p and L,,r, the integrals over PAR spectral interval. 
Neglecting the spectral composition of the incoming diffuse radiation, therefore, does not exceed the accuracy 
of our measurements. Thus, we will ignore the spectral composition of the incoming diffuse radiation in our 
model. 

The dependence of Z& on the wavelength cannot be ignored. This component results from the interaction of 
photons in the direct solar beam with phytoelements. Photons of different wavelength interact with phytoele- 
ments differently (Section 4). Therefore, the intensity of the PAR energy is a weighted sum of monochromatic 
radiation intensities. The weights are determined by a spectral composition of the solar beam. This makes the 
radiative field sensitive to spectral properties of both phytoelements and the incoming radiation. To illustrate, 
we simulate two vertical profiles of horizontally averaged PAR fluxes. In the first case, we account for the 
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Fig. 7. Diurnal variation of horizontally averaged PAR fluxes (in pm01 mm2 s- ’ ) at various depths below the top of the canopy at 29 m. 

Solid line: the spectral reflectance and transmittance of one-year shoot are considered, dotted line: the spectral reflectance and transmittance 
of one-year shoot are ignored. 

spectral variation of one-year shoot reflectance and transmittance described in Section 4. In the second one, the 
reflection and transmittance coefficients are constant with respect to the wavelength and equal to their mean 
values over the PAR region of the solar spectrum. Diurnal variations of these horizontally mean fluxes at 
different depths on a clear sunny day are shown in Fig. 7. The difference between these fields defined 
accordingly by Eq. (19) increases with moving away from the top surface towards the soil, reaching the value of 
26% under the tree crown level. 

5.3. Angular distribution of the incoming difise radiation 

Models for conditions of a standard overcast and a clear sky were incorporated in our approach to simulate 
the diffuse radiation, T&,, incident on the top surface of the canopy boundary. In the first case, the standard 
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overcast sky, the intensity of the incoming diffuse radiation is suggested to be independent on azimuth and 
approximated by: 

T,,,(cfJ> = i(T) 
1 + blcos( u) I 

l+b 
, a- (cL+#+J+= arccos(/L)>;,rESV,, 

where 1 + b is the ratio between sky brightness in the zenith, i(r), and at the horizon, i(7r/2), and it varies 
between 2.1 and 2.4 (Monteitb and Unsworth, 1990). Substituting Eq. (23) into Eq. (21) and taking into account 
Eq. (241, we can express i(r) as: 

l+b 
i(T> = R,.d / 2 \ 

In the second case, a model of the clear sky proposed by Pokrowski (1929) is used to simulate the incoming 
diffuse radiation during sunny days: 

where i, is the sky brightness in a direction at the horizon that can be specified in the same way as above. 

5.4. Radiation penetrating through lateral sides 

The radiation penetrating through the lateral canopy sides strongly depends on the neighbouring environment. 
Its influence on the radiative field in the forest canopy is essential near the lateral canopy boundary. 
Inaccuracies in the lateral boundary conditions, therefore, cause essential distortions in the simulated radiative 
field in this domain. These distortions, however, decrease with moving away from this boundary towards the 
centre of the stand. When the radiative regime in a extended forest is analysed, this side effect can be neglected. 
Inaccuracies in the boundary conditions can, however, put problems in investigating the radiation distribution in 
a small canopy because the dimension of the ‘distorted area’ can be comparable to the dimension of the chosen 
site. A problem then arises as to how the inaccuracies in the boundary conditions can be minim&d. 

In the frame of our model, the ‘predictor-corrector’ technique (Hall and Watt, 1976) is realised to achieve 
this goal. It means we predict the radiative field in a tree sample stand by solving a one-dimensional vertical 
transport equation at first. Its solution, i.e., the vertical profile of the horizontally averaged radiation intensity, is 
taken then as the radiation penetrating through the lateral canopy boundary. The average of our three-dimen- 
sional total interaction (Eq. (2)) and differential scattering (Eq. (3)) cross-sections over horizontal surfaces 
provides vertical profiles of required input coefficients for the one-dimensional transport equation which, on the 
average, consider features of both the simulated canopy and its neighbouring environment. Information about 
angular distribution and spectral composition of radiation incident on the top canopy boundary is also needed to 
solve the one-dimensional transport equation. The models of the incoming radiation described in previous 
subsections serve as input to predict the radiative field. Thus, the ‘predictor-corrector’ technique allows us to 
simulate the lateral boundary conditions, accounting a complicated process of photon interactions both with the 
chosen forest site and with its neighbouring environment. A dependence of size of the distorted area’ induced 
by utilising our approach on adjoint vegetation, on the atmospheric conditions and the model resolution was 
studied by Kranigk (1996). In particular, it has been shown that the ‘distorted area’ consists of space points 
being less than about 5 m apart from the lateral boundary of the forest. This area, therefore, must be excluded 
from the analysis. 

A neighbouring environment influences the radiative regime in a forest of a small area. To demonstrate a 
range of this influence we simulate two extreme situations. In the first one, we cut the forest surrounding our 
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Fig. 8. Vertical profile of the canopy transmittance derived from the one-dimensional (legend ‘1D model’) and three-dimensional (legends 
‘3D black’ and ‘3D white’) models on a cloudy day and on a clear sunny day. Curves ‘3D: black’ correspond to a forest stand of a small 
area surrounded by the optically black lateral boundary, and curves ‘3D: white’ to an isolated forest stand of the same size and structure. 

sample stand. In this case the incoming solar radiation can reach the sides of our sample stand without 
experiencing a collision. The lateral boundary condition (Eq. (6)) coincides with Eq. (5) in this case: 
z*(r,,~n>=L,,,(r,,n)+L,,,(r,) 6(fl-J&)>, r,=SV,, fl*nn,<o. 

In the second situation, we ‘plant’ a forest of an extremely high density around our sample stand so that no 
solar energy can pass through the vertical boundary. The lateral boundary conditions for these optically black 
vertical sides are expressed as: Z,(r,, J2) = 0, r, E 6 V,, d2 - n, < O.The radiative regimes in a real stand usually 
vary between these extreme situations. For each situation we estimate the vertical profile of the canopy 
transmittance, T(z), as: 

z-(~) = 1-11 
R, ml(&) Z+S, 

dXdyj700nmdAjz~+Z*(~,~,z,~)l~.nld~, 
400 nm 

where S, is the horizontal surface of the area m(S,> = 40 X 40 m2 at the soil level; z + S, is the same surface 
but at the depth z. Fig. 8 shows these canopy transmittances at noon on a clear and on a sunny day in a sample 
stand Lange Bramke (Knyazikhin et al., 1996). A ‘predicted’ canopy transmittance evaluated from the 
one-dimensional transport equation is plotted in this figure also. One can see that the radiative regime in the 
forest of a small area is more sensitive to the lateral boundary conditions during cloudy days. The radiation 
transmittance in both cases, however, is quite higher than the one derived from the one-dimensional transport 
equation. 

6. What do we know about forest albedo? 

By definition, the forest solar albedo is the ratio of the total solar energy reflected by the forest to the single 
incident at the forest. To measure the forest albedo, two hemispherical sensors are usually mounted above the 
forest canopy. The first one records the downward energy flux incident at a horizontal surface above the forest 
and the second one, the upward energy flux reflected by the forest. The ratio between these measured fluxes is 
usually interpreted as the forest albedo. The aim of this section is to show that such measurement of the forest 
albedo does not provide a real albedo, at least when the PAR albedo is evaluated. 

We consider our sample stand described in Section 3. We denote by rs = (xs, ys, - h) the coordinates of the 
sensor located above the forest canopy at the height h (Fig. 9). Let Js( a ) be the radiation intensity of the PAR 
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0 
TOP CANOPY BOUNDARY X 

z &0lL 

Fig. 9. Coordinate system for a downward facing sensor. Here, rs is the point of sensor location; n is the upward normal to the sensor 
surface; L8 is a direction of radiant energy captured by the sensor; 8 = cos-‘p is the angle between the direction 0 and the normal n; 
Z[r,,f2] is the distance between the sensor and the top canopy boundary, SV,, along the direction - a; r, = rs - l[r,,CJ]f2 is a point of 
the top canopy boundary; 0, is the projection of the point rs onto the top canopy boundary. Points of the top canopy boundary are 
expressed in polar coordinates, pt and $t, with its pole at the point 0, and polar axes 0, X, parallel to OX; 0, is a unit vector at the point 
0, directed to r,. 

h-radiance at the point rs in the upward direction 0 - ( ~~4). The upward PAR energy flux reflected by the 
forest and captured by the sensor can be expressed as: 

(25) 

We term the ratio, A,, of this captured energy, Es, to the incident PAR energy, R, (Eq. (20)), an assumed 
albedo, i.e., 

A, = Es/R,. (26) 

A mean amount EF of the PAR energy reflected by a horizontal surface S, of an area m(S,,) in the upper 
crown level (i.e., z = 0) is: 

(27) 

where J(t,JI) = j&oo,r h Z (r, l2 )dh is the radiation intensity of the PAR irradiance streaming out of the sample 
stand in the upward direction a and Z,(r,a> is a solution of the transport Eq. (1) at points of the canopy 
boundary. The forest albedo, A,, can be written as 

(28) 

Our aim is to compare the forest albedo, A,, and the assumed albedo, A,, and to estimate their difference. 
The radiation intensity, J,(a), of the PAR h-radiance captured by the sensor can be expressed via the 

radiation intensity of the PAR it-radiance streaming out of the sample stand in the upward directions as (Fig. 9): 
Z,(a) = .Z(r,, p,cja), where rt = rs - I[ rs , d2 ] i2 is a point on the top surface of the forest boundary; lb,, f2 I 
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denotes the distance between the point rs and the top surface of the forest boundary along the direction - a. 
We will express points of the surface 6 V, in terms of polar coordinates with its pole at the point 0, = (x,, ys, 
0) and with the polar axes parallel to OX (Fig. 9). Let pt and & be the polar coordinates of a point rt of the 
surface S V,. The azimuth 4 and the polar angle 13 = cos-‘p of the unit vector CJ are: 

#u=coso= -- ,-&d,=a+O- 
d f 

Substituting these equations in Eq. (25) and Eq. (27) we obtain: 

(29 

(30) 

where 0, = (cos c#+,, sin C& 0) is the unit vector (Fig. 9). 
Eq. (29) depends on the space point 0, of the top canopy boundary. Its horizontal coordinates coincide with 

the horizontal coordinates of the sensor location. Eq. (30) is independent on this point because the integration in 
the square brackets is performed over all points of the surface S,. Averaging Eq. (29) over points 0, and 
accounting Eqs. (26) and (28) we get the following relationship between the assumed albedo and the forest 
albedo: 

1 
lim - 

I 
AsdO, 

Q+m ~(f%> ql 
= A,. 

Thus, the forest albedo is equal to the mean assumed albedo, which results from averaging the responses of 
‘a large number of sensors’ distributed over a horizontal surface above the forest canopy. If, therefore, a forest 
stand can be idealised as a horizontally homogeneous medium (i.e., J(r,,LJn> does not depend on points r, of 
the top forest boundary) then, as it follows from Eqs. (29) and (30), the assumed albedo coincides with the 
forest albedo. In reality, however, such an idealisation is usually unrealistic. To illustrate, we evaluate the 
assumed and forest (Eqs. (29) and (30)) albedos by means of our three-dimensional model and compare these 
results with a measured assumed albedo. 

The sample stand described in Section 3.1 and plotted in Fig. 1 was chosen to realise this experiment. Two 
PAR sensors were mounted 10 m above our forest canopy (h = 10) at the height Zs + h = 39 m to measure the 
incident (R,) and reflected (Es M) PAR energy fluxes. A clear sunny day (14 October 1994) was chosen to 
carry out these measurements. dimensions of the simulated forest stand were X, = 25 m and Ys = 30 m in our 
calculations. Because our model simulates the radiative field in a forest of Bfinite size, we approximate Eq. (29) 

by 

PO 2TT 
Es= - /I h2p, 

0 0 (h’ + p:)’ 
J(o, + ptL4t;/.4)dptd4, + t;i2- th Tp2,2 J~‘pt~+t 

2 t 

h2 
= Es,o( PO) + ~JM ~ 

h, + P; 
(31) 

where E,,,( pO) denotes the first integral term and J, is the value of mean intensity of PAR energy reflected by 
the top forest boundary S V,, of dimensions X, = 25 m and Ys = 30 m and captured by the sensor, i.e., 
r JM = E,,,( pO>. The value pO was chosen so that ,rrpi = XsYs, i.e., pO = 15.5 m. 

Fig. 10 shows the diurnal variation of the assumed albedo derived from measurements ( AS,M(t) = ,!&/Rp) 



236 Y. Knyazikhin et al. /Agricultural and Forest Meteorology 88 (1997) 215-239 

Fig. 10. Diurnal variation of forest albedo obtained by measurements CO), by adjusted measurements ( * ), and by model calculations (0 1. 

and from simulations (A,(t) = Es/R,). The diurnal variation of the forest albedo, A,(,S,,t) = E,(S,)/R,, is 
plotted in this figure also. The top canopy boundary, S V,, was taken as S,, (see Eq. (27)) in our calculations. A 
difference between the diurnal variation of the simulated sensor and forest albedos makes up 45%. This 
difference was derived from Eq. (19) in which M(t) and M,(t) are replaced by A,(t) and A,(,S,,t) 
respectively. Note that Eq. (19) took the value 18% for transmitted and spatially averaged radiation on a clear 
sunny day. The radiant energy that penetrated through the forest canopy and captured by a sensor located 
under-crown space is also described by Eq. (29), in which the angular variable I_L must be replaced by - p and 
the spatial variable by points on a under-crown surface. The sensor response, therefore, strongly depends on its 
location in the forest and is characterised by a large spatial variation in both these cases. Its spatial average, e.g., 
as it was shown in Section 3.3, is needed to evaluate both an amount of transmitted radiation and the forest 
albedo correctly. 

The diurnal mean of the simulated assumed and forest albedos were 3.1% and 4.5%, respectively. Evaluation 
of the forest albedo by diurnal mean response of one fixed sensor above the forest stand does not determine the 
average of the forest heterogeneity. In our example, the difference makes up 45% with respect to the sensor 
response. 

The difference between the diurnal variation of the measured assumed albedo, A,,,(t), and the simulated 
A,(t), as it was derived from Eq. (19), is 25%. This difference is mainly caused by inaccuracies in the 
evaluation of radiant energy intercepted by the sensor during the early morning and the late evening hours. We 
think that our model evaluates the sensor response more accurately than it provides a real sensor. This 
hypothesis is based on the following arguments. It follows from Eq. (31) that the radiant energy reflected by the 
forest and captured by the sensor can be represented by the sum of two components. The first, E,,,( pO), is the 

radiant energy that reaches the sensor at the angles between 0 and 8, = cos -l( h//w) to the upward 
normal of the sensor surface, and the second component is the radiant energy reaching the sensor from other 
directions. The real sensor can register radiant flux that exceeds a critical value of sensor sensitivity, E, i.e. 
when TJ, h*/(h* + p,‘) > E. It follows from this inequality that the decrease of JM involves decreasing the 
angle B,,. Because the incoming PAR radiation is small during the early morning and the late evening hours, the 
mean intensity of scattered PAR radiation J, is also small and, as a consequence, the sensor can measure the 
radiant flux reaching the sensor from small solid angle about the upward normal to the sensor surface. As a 
result, a fraction of a scattered PAR energy is not registered by the sensor. Note at a low solar elevation, the 
direction of scattered PAR energy caused by the hot spot is also low. This energy, therefore, may not be 
registered by the sensor in spite of the fact that the intensity of scattered radiation reaches its maximum about 
hot spot directions (Kuusk, 1991). Clearly these arguments do not precisely prove our hypothesis about the 
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sensor response during the early morning and the late evening hours. However, the problem of evaluating a 
correct value of the forest PAR albedo needs special attention. 

7. Conclusions 

We used the transport theory to simulate three-dimensional radiative field. This theory is based on 
assumption that Beer’s law can be locally applied to describe light interaction with a plant canopy (Ross, 1981) 
that holds true for sufficiently great volumes filled with phytoelements. It predetermines a spatial scale at which 
this approach is applicable. 

Forest structure models accounting for the tree shapes, their spatial locations and the vertical distribution of 
foliage elements within each individual crown can be appropriate to predict mean energy fluxes over horizontal 
surfaces. The mean energy fluxes over a horizontal area of about 10 X 1 m2 below the forest canopy is 
underestimated by our model by about 20-25%. The length of this surface was slightly greater than a maximum 
diameter of crown projections. These predicted fluxes in such models are mainly caused by the radiant 
interaction with a thin layer of tree crowns and with the soil in between-crown openings. They are only slightly 
sensitive to the within-crown radiative regime. Such structural models, therefore, are well justified to predict the 
radiation reflected by the tree crown, but may lead to essential miscalculation of the photosynthesis process. The 
canopy photosynthesis results from the interaction between the distribution of radiation on the foliage and the 
photosynthetic response of foliage elements. Therefore, the evaluation of mean radiant energy over surfaces of 
different inclinations is needed to model canopy photosynthesis correctly. This can be achieved if the forest 
structure model provides the distribution of phytoelements over surfaces of different inclinations with the 
necessary degree of accuracy. 

Ignoring the spectral composition of the incoming solar radiation and the spectral variation of leaf reflectance 
and transmittance can lead to an essential overestimation of the PAR energy fluxes at a lower crown level. 
According to our estimates, such a difference can reach 26%. A special submodel for retrieving the spectral 
composition of the incoming radiation from the direct PAR beam incident at the forest canopy is, therefore, 
incorporated into our canopy-radiation model. 

A neighbouring environment may influence the radiative regime in a forest canopy of a small area. This 
influence is more pronounced during cloudy days than during clear sunny days. A special technique was realised 
in our model to account for the effect of the forest surroundings on the canopy radiative regime. It makes it 
possible to use our model for evaluating the impact of various forest management methods on the solar energy 
available for forest growth and other ecosystem processes. 

The response of a hemispherical PAR sensor installed above the forest canopy and registering an upward 
energy flux depends strongly on the sensor location. This dependence is mainly caused by forest heterogeneity. 
Diurnal mean response of one fixed sensor above the forest canopy does not average the effect of the forest 
heterogeneity. A special arrangement of several radiation sensors above the forest canopy is needed to measure 
the forest PAR albedo correctly. For example, a location of a PAR sensor (selected by chance) above a 
coniferous forest stand at the scientific research station ‘Solling’, near Gbttingen (Germany), leads to an 
underestimation of the reflected PAR energy by 45%. This finding suggests that the radiation balance over the 
whole short- and long-wave frequency distribution could be overestimated, an indicator that is often found in 
field measurements (Laubach et al., 1994; Laubach, 1995). A strict argument or a disproof of this hypothesis, 
however, needs special investigation. 
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