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Abstract

The insights gained from present land cover classification activities suggest integration of multiangle data into classification attempts for
future progress. Land cover types that exhibit distinct signatures in the space of remote sensing data facilitate unambiguous identification of
cover types. In this first part, we develop a theme for consistency between cover type definitions, uniqueness of their signatures, and physics
of the remote sensing data. The idea of angular signatures in spectral space is proposed to provide a cogent synthesis of information from
spectral and angular domains. Three new metrics, angular signature slope (ASSI), length (ASLI), and intercept indices, are introduced to
characterize biome signatures. The statistical analyses with these indices confirm the idea that incorporation of the directional variable should
improve biome classification result. The consistency principle is tested with the Multiangle Imaging SpectroRadiometer (MISR) leaf area
index (LAI) algorithm by examining retrievals when both unique and nonunique signatures are input together with a land cover map. It is
shown that this requirement guarantees valid retrievals. Part II provides a theoretical basis for these concepts [Zhang et al., Remote Sens.
Environ., in press.]. (C 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The identification and classification of global vegetation
into cover types and biomes is valuable for at least two
reasons. First, land cover and land use changes inferred from
vegetation maps is not only a direct evidence of the human
and climate impact on the land but is also a key piece of
information required for the study of global biogeochemical
cycles (Vitousek, Mooney, Lubchenoco, & Melillo, 1997).
Second, most climate and biogeochemical models and algo-
rithms that estimate surface biophysical variables from
remote sensing data utilize vegetation maps to assign certain
key parameters to reduce the number of problem unknowns
(e.g., Bonan, 1998; Knyazikhin, Martonchik, Diner, et al.,
1998; Knyazikhin, Martonchik, Myneni, Diner, & Running,
1998; Potter et al., 1993). In short, a fundamental description
of global vegetation is simply characterizing the cover type at
a certain location and a given time.
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Remote sensing data, especially satellite-measured
reflected radiation magnitudes at broad wavelength bands
in the solar spectrum, have been used to segregate global
vegetation into a finite set of spectrally similar classes using
cluster analysis, decision trees, neural networks, etc. (Car-
penter et al., 1999; DeFries & Townshend, 1994; Friedl &
Brodley, 1997; Gopal, Woodcock, & Strahlar, 1999; Han-
sen, DeFries, Townshend, & Sohlberg, 2000; Moody &
Strahler, 1994; Running, Loveland, Pierce, Nemani, &
Hunt, 1995). The accuracy of the produced vegetation maps
varies widely depending on the training data, input remote
sensing data, and the classification method. The insights
gained from these activities suggest integration of multi-
angle data into land cover classification attempts for future
progress in this area.

The theme of this two-part series is the following. Land
cover types that exhibit distinct signatures in the space of
the remote sensing data facilitate unambiguous identifica-
tion of the cover types. This implies: (a) cover definitions
consistent with physics of the data, (b) number of classes
dependent on the number of distinct signatures, and (c)
spatial resolution of remote sensing data consistent with
cover type definitions to minimize the problem of mixtures.
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The discussion in these papers is limited to spectral and
angular dimensions of the optical remote sensing data.

The consistency mentioned above is the following. The
physics of processes operative in the generation of optical
remote sensing data, namely, radiative transfer, admits
certain variables that characterize the transport and inter-
action of photons with the host medium (Myneni et al.,
1995). These variables are determined by the structure and
optics of vegetated land surfaces. Land cover definitions, if
given in terms of these surface properties, provide consist-
ency with the signal generating processes of the measure-
ment. Possibly, such a consistency principle constitutes a
theoretical basis for land cover identification.

This two-part series is organized as follows. The relation-
ship among cover type definitions, spatial resolution of the
data, and cover mixtures is addressed first. The spectral and
angular signatures of different cover types as recorded in the
Polarization and Directionality of the Earth's Reflectances
(POLDER) data are presented next. Information from spectral
and angular domains is synthesized as angular signatures in
spectral space. Two new metrics, angular signature slope and
length indices (ASSI and ASLI, respectively), are then
introduced and evaluated. The consistency requirement is
tested with the Multiangle Imaging SpectroRadiometer
(MISR) leaf area index (LAI) algorithm by examining retriev-
als when both unique and nonunique signatures are input
together with a land cover map. It is shown that the consist-
ency requirement guarantees valid retrievals. The second part
of this series provides a theoretical basis for these concepts
(Zhang, Shabanov, Knyazikhin, & Myneni, in press).

2. Land cover definitions and spatial resolution of
the data

Land cover or biome classification is typically based on
identifying the spectral signature (and its temporal evolution)

(a)

I$ ' '

of a cover type and utilizing this signature to classify a large
region. A common problem with land cover and biome maps
is one of misclassification; that is, a pixel is wrongly desig-
nated as a certain cover type. However, even when a pixel is
designated as the correct cover type, there is still the possibil-
ity that the designated cover type is just the dominant cover
type, and other cover types can potentially exist at that
location. This problem of land cover mixtures generally arises
when the chosen set of land cover classes and spatial resolu-
tion of the data or the classification map are incompatible. In
some instances, however, mixtures occur naturally even at
high spatial resolutions, as for example, needle leaf and
broadleaf forest mixtures, in which case the mixture should
be treated as a separate cover or biome type. Since land cover
information is routinely used in retrievals of LAI, fraction of
incident photosynthetically active radiation absorbed by
vegetation (FPAR) and albedo (Knyazikhin, Martonchik,
Myneni, et al., 1998; Lucht, Schaaf, & Strahler, 2000) and
in global climate and biogeochemistry models (e.g., Bonan,
1998; Potter et al., 1993), it is important to characterize the
degree of land cover heterogeneity. This is facilitated here by
the availability of a higher resolution biome map (1 km)
compared to the resolution of the POLDER data (6.17 km).

2. 1. POLDER data

The POLDER instrument is a wide field of view imaging
radiometer designed to measure the directionality and polar-
ization of the sunlight scattered by the Earth/atmosphere
system (Deschamps et al., 1994). The instrument acquired
eight months of data globally from November 1996 to June
1997 at 6.17-km resolution and eight wavelengths (443, 490,
565, 670, 763, 765, 865, and 910 nm). Polarization of the
incident light is measured at three channels, 443, 670, and
865 nm. The Level 2 POLDER multiangle surface reflec-
tance products are geocoded, calibrated, cloud screened, and
partially atmosphere-corrected data (Leroy et al., 1997). For
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Fig. 1. Angular variation of the BRDFs of a homogeneous patch of needle leaf forest as measured by POLDER in June 1997 (55.36 N, 92.20'W) and the
corresponding sun-view geometries. The symbols i and , denote view and sun directions. The horizontal axis in panel (b) is expressed in terms sin i,

where parameter 1 is defined in Fig. 6.
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operational reasons, the surface reflectances were not cor-
rected for the tropospheric aerosol effects (Hautecceur &
Leroy, 1998). The data thus contain some residual noise,
possibly from subpixel clouds and aerosol effects, which can
be gauged from the reflectance at 443-nm channel (Bicheron
& Leroy, 1999). The POLDER multiangle surface reflectan-
ces (BRDF-the bidirectional reflectance distribution func-
tion) at red (670 nm) and near-infrared (NIR, 865 nm)
wavelengths over North America for the period June 1,
1997 to June 30, 1997 were used in this study. The maximum
view angle is approximately 600 and there are up to 14 looks
for each multiangle measurement, but the typical number
is 12.

The accuracy of surface reflectances after removal of
atmospheric effects essentially determines the accuracy of
surface parameter retrievals (Martonchik, 1994). Uncertain-
ties of a multiangle measurement can be evaluated from
several records of directional reflectances of the same pixel
(as in Fig. 1 denote view and sun directions, respectively.
The horizontal axis in panel (b) is expressed in terms sin - 1[t,
where parameter it is defined in Fig. 6).The average shape of
BRDF and its directional spatial variation, namely BRVF
(bidirectional reflectance variance function), can be used to
study the typical signatures among different land cover types
(Ni & Jupp, 2000; Ni, Woodcock, & Jupp, 1999). The mean
BRDF, its variance BRVF for an individual pixel or a group
of pixels, are calculated as follows:

BRDF(OV, tJ)

BRVF(OV, tJ)

(1)
BI O-YEBRDF,(O,,,tp,)

1 N

N Z [BRDFk(0 ,YV)N1kl1
BRDF(OV, Y)] 2

where BRDF denotes mean BRDF, BRVF is the variance,
and N is number of available records over direction (Ov,YJv)

Specifically, we evaluate the mean BRDF, BRVF, and the
relative uncertainty E for each pattern of POLDER
configuration by substituting (Oyvt) with (Eli) for the above
formulas (the definition of [t is explained later; cf. Fig. 5).
Therefore, the BRDF([ti) and BRVF([ti) denote the average
of BRDF and BRVF values over the interval [ti - 1 ti)
(see Table 1). The relative uncertainty E can be calculated as
follows (Eq. (3)):

([t) BRVF D ([) (3)
BRDF(1i)

Table 1 shows variation in e(pt) derived from all available
observations of a selected needle leaf forest pixel and for
each of the three patterns of observation configuration (these
are explained later; cf. Fig. 5). The uncertainties of the
multiangle records are about 31% at red and 11% at NIR,

Table I
Mean uncertainties e([) in POLDER BRDFs

Pattern I () Pattern 2 (%) Pattern 3 a)

sin i ) Red NIR Red NIR Red NIR

45.0 25.5 9.03 32.4 10.4 9.67 9.01
37.5 30.9 6.51 46.4 8.77 56.0 19.6
30.0 30.5 10.1 20.3 9.78 53.8 14.0
22.5 45.1 7.99 17.9 10.4 43.1 10.9
15.0 34.3 8.25 22.3 4.38 33.6 9.77
7.5 31.9 8.70 16.7 9.11 16.5 11.5
0.0 39.6 7.08 14.9 5.07 27.3 10.3
7.5 32.1 8.27 14.2 2.33 22.0 11.2

15.0 42.8 7.61 18.8 5.62 15.6 7.04
22.5 29.0 5.25 19.9 10.9 25.0 10.7
30.0 37.8 8.51 17.9 8.10 12.7 7.82
37.5 23.3 10.3 23.1 12.8 16.5 8.84
45.0 33.2 3.65 13.5 10.3 14.9 8.57

Parameter p is defined in Fig. 6. Bold numbers indicate the symmetric
center of each pattern.

irrespective of the observation geometry. The higher uncer-
tainty at red is due to a stronger atmospheric effect and
smaller vegetation signal (Kaufman & Sendra, 1988). Var-
iations in BRDF corresponding to oblique view angles
exhibit similar behavior, i.e., they are maximal at off-nadir
directions and minimal at near-nadir looks. Again, this is
due to a larger atmospheric effect at off-nadir directions
compared to near-nadir views.

2.2. Biome classification map

A decision tree classification algorithm was used to
generate a six-biome North American land cover map from
AVHRR normalized difference vegetation index (NDVI)
and ancillary data sources at 1-km resolution (Lotsch, Tian,
Friedl, & Myneni, submitted). The biome classification
scheme segregates global vegetation into six major biome
types depending on the vegetation structure, optical prop-
erties, and backgrounds (Myneni, Nemani, & Running,
1997). These biome types are: grasses and cereal crops,
shrubs, broadleaf crops, savannas, broadleaf forests, and
needle leaf forests. The site-based accuracy of this map is
73%. When compared with maps generated from the same
data but classified using the International Geosphere Bio-
sphere Program (IGBP) classification scheme (e.g., the EDC
map, Loveland et al., 1995) and the UMD map (Hansen
et al., 2000)), the six biomes were mapped with approx-
imately 5% higher overall accuracies (Lotsch et al., submit-
ted). This improvement is possibly due to fewer biome
classes than IGBP classes.

2.3. Land cover mixtures

Each 6.17-km POLDER pixel encompasses about 36
pixels from the 1-km biome map. Let HF(biome) be the
fractional coverage of the various biomes or the homogen-
eity factor. We assign the predominant biome to the larger
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POLDER pixel. Thus, the 6-km map provides information
on the large-scale biome distribution and also on the degree
of cover heterogeneity within each pixel. The fractional
coverage of the dominant type varies considerably and can
be less than 50% in the case of severely mixed pixels. If one
insists on highly homogeneous pixels, say HF 90% or
100%, then only 27-10% of the 6-km pixels satisfy this
requirement (Table 2). About 20% of the pixels cannot be
assigned a biome type because the homogeneity factor is
less than 50% at 6-km resolution.

We shall assume the homogeneity factor to be an
approximate index of biome patch size. For pixels with
HF- 100%, the patch size is 36 km2 . Likewise, the patch
size is 18 km2 for HF 50%. Strictly speaking, this defini-
tion of patch size is not valid when HF is less than 100%, as
the smaller 1-km2 pixels of a particular cover type are not
necessarily spatially contiguous within the patch, although
the degree of contiguity should be higher for large values of
the homogeneity factor. For this reason, this analysis is
restricted to homogeneity factors greater than 50%. The
relative proportion amongst the six biomes of patches
greater than a certain size is shown in Fig. 2. This proportion
in the case of broadleaf and needle leaf forests is independ-
ent of the patch size, and is approximately 10% and 30 %,
respectively. In the case of shrubs, there is a skewness
towards larger patches, while the opposite is seen in the case
of grasses. This is further illustrated with a plot of the patch
size distribution in Fig. 3a. Grasses, crops, and savannas
show smaller patches with increasing frequency, possibly
indicating their prevalence everywhere. Shrubs on the other
hand show just the opposite. The shrubs are generally found
in arid regions where it is hot and dry, and the location of
such regions is usually spatially not fragmented. Hence, not
all patch sizes of shrubs are to be found. In the case of
forests, the frequency of very large patches is high, and the
frequency for patches of all other sizes is constant. The
merit of this discussion is not in its rigor, but as an
approximate guide for taking the first steps towards address-
ing the issues of scale and mixtures in this context.

To minimize land cover mixtures, and thus restrict most
errors to misclassification only, patches of all sizes must be
uniquely assigned a land cover or biome type. While this
demands very high-resolution data, one can aim for min-
imizing the problem of mixtures in, say 6 0%, of the patches.
The critical resolution of the remote sensing data required is
now defined by the patch size at which the cumulative size
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Fig. 2. Relative proportion amongst the six biomes of patches greater than a
certain size.

distribution crosses this threshold when cumulated along
decreasing patch size (Fig. 3b). For shrubs, which show a
high frequency of larger patches, the critical resolution is
lower, about 5.7 km. On the other hand, grasses, crops, and
savannas, which show smaller patches with increasing
frequency, the critical resolution is about 5 km. Thus, the
critical resolution is biome dependent. Again, we emphasize
the lack of rigor in these arguments. The results are provided
for illustrative purposes only.

3. Spectral signatures

The location of reflectance data in the spectral space is
the basic source of information about the vegetation canopy
conveyed by single-angle multispectral satellite data. This
information is typically used for biome identification. The
movement of data in this space characterizes changes in
canopy properties (Shabanov, Zhou, Knyazikhin, Myneni,
& Tucker, in press). This is exploited in the design of
vegetation indices (Huete, 1988). The biome spectral sig-
natures, defined as the location of canopy BRDFs in the
spectral space, are shown in Fig. 4, which depicts the
POLDER BRDF densities in the red-NIR and red-blue
spectral spaces as a function of biome type and homogeneity
factors. Each contour in Fig. 4 separates an area in the
spectral space of high data density containing 50% of the
pixels from a given biome. Thus, the density contour shows
the most probable location of the biomes in the spectral
space. This location depends on canopy structure, optical
properties of the leaves and ground, sun-view geometry,
and spatial resolution of the data.

Table 2
Distribution of biomes based on homogeneity factors

Homogeneity Biome type
factor (%) Grasses and cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needle leaf forests Total

100 0.50 4.39 0.35 0.18 1.34 2.88 9.64
90 2.55 9.95 0.98 0.88 3.24 9.00 26.60
50 15.09 19.12 4.21 5.93 8.57 26.75 79.67
All data 20.61 21.55 6.56 8.74 10.68 31.86 100

Distribution values at homogeneity level of 90% are in boldface.
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Fig. 3. Biome patch size distributions (a) and the corresponding cumulative distribution functions (b).

The locations of biome data in the spectral space, that is,
their spectral signatures, are more distinct for the case of
homogeneous patches (HF 100%) as expected. This is
especially true in the red-NIR space than in the red-blue
space for the following reason. The canopy-leaving radi-
ation is a function of canopy structure, which is wavelength
independent, and optical properties of the leaves and the
canopy background. The optical properties of the foliage are
similar at blue and red wavelengths. Therefore, the spectral
properties of a sufficiently dense canopy are comparable in
magnitude at these wavelengths.

The signatures of broadleaf forests, needle leaf forests,
shrubs, and to some extent grasses are distinct in the red-

NIR space (Fig. 4a). The other two biomes, savannas and
broadleaf crops, tend to overlap with broadleaf forests,
grasses, and shrubs. Such confusion will lead to misclassi-
fication, if only information on location in the red-NIR
space is used. Therefore, additional information, preferably
angular as it characterizes canopy structure, is needed for
biome identification and parameter retrieval.

4. Angular signatures

A vegetated surface scatters shortwave radiation into an
angular reflectance pattern, known as the BRDF, the mag-
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nitude and shape of which is governed by the composition,
density, optical properties, and geometric structure of the
vegetation canopy. The BRDF is defined as the directional
radiance emanating from a target divided by the irradiance
(incident flux density) illuminating the target along a single
incident angle (Nicodemus, Richmond, Hsia, Ginsberg, &
Limperis, 1977). Its shape is informative of canopy structure
and ground beneath the canopy.

The angular signatures of vegetation canopies are often
demonstrated as variations in reflectance with respect to
view polar angle in the principal plane (Br&on et al., 1997).
These signatures typically show a sharp peak about the
retrosolar direction, the so-called hot-spot effect (Kuusk,
1983), because of the absence of shadows. Strong back-
scattering is another characteristic feature of vegetation
angular signatures. Deriving such signatures from single-
look instruments requires compositing many days of data,
which introduces considerable uncertainties due to changing
atmospheric and surface conditions. However, with instru-
ments such as POLDER and MISR, near-simultaneous
looks of the same target are possible and this facilitates
the study of angular signatures.

The angular variation of the BRDFs of a homogeneous
patch of needle leaf forest as measured by POLDER is
shown in Fig. 1. The BRDFs were assembled from 30
different POLDER views of the same pixel during June of
1997, which then were averaged over the records. The
corresponding sun-view geometries are also shown in
Fig. 1. The variation about the mean reflectance values
can be largely attributed to changing measurement geometry
and atmospheric conditions because the needle leaf forest
can be assumed to be a reasonably stable target during this
month. Such variations are indicative of the degree of
uncertainty in the measurements, which is a valuable source
of information for inverse problems (Wang et al., in press).
The geometrical variables required to express the angular
signatures are developed in the next section.

The general shape of the BRDFs for different biomes and
the corresponding directional spatial variance information
(BRVF) can be reconstructed from a group of multiangle
measurements by Eqs. (1) and (2). The average BRDF and
BRVF shapes are demonstrated in Fig. 5 from homogeneous
pixel data of the six biomes. These BRDF shapes for the six
biomes show certain differences and in general, the hot-spot
can be clearly observed. BRVF shapes appear to be similar
to the corresponding BRDFs, which indicates that a vari-
ation peak exists in hot-spot area and minimum value at
forward scattering. This shape is similar to the BRVF
measurements and models (Ni et al., 1999). The vegetation
cover is an important determinant of spatial variance,
especially when the background is brighter than the vegeta-
tion canopy. The contrast between sunlit and shaded tree
crowns in the case of forests also contributes to the spatial
variance (Ni & Jupp, 2000). Therefore, we can expect the
BRVF to also peak in hot-spot direction. The reason that the
BRVFs of POLDER data do not show an apparent peak

value about the nadir direction, compared to measurements,
is probably because of the coarse resolution of the data. For
fine resolution data, the nadir view has more probability to
capture the bare soil or dense vegetation. The BRVFs
exhibit higher value at the edge and lower values in the
middle. The high value of BRVF indicates either the
directions have more information or the uncertainties of
the measurements are high.

5. Geometry of angular signatures

POLDER view directions define a curve on the reference
horizontal plane in cylindrical coordinates (Fig. la). All
curves corresponding to the various multiangle records have
similar orientation as determined by the POLDER obser-
vation configuration. One of these curves is a near straight
line passing through the pole and represents a multiangle
record with an almost constant view azimuth. Let this be
denoted as the reference curve or line. The other curves are
nearly symmetric with respect to the reference line. The
angle between the reference line and the horizontal OX axis,
measured counterclockwise, is used to parameterize the
reference line (Fig. 6). This angle is denoted as the slope
of the reference line. The slope angle (r,) can change with
latitude of the pixel. Its value varies between 300 and 600 for
North America. Each direction ft=(Ovy,) of a multiangle
record can be projected onto the reference line and para-
meterized in terms of the distance [t between the pole 0 and
its projection (Fig. 6), and assigned a " " sign if [t > 0 and

otherwise.
Let t d - (d,yd) be the direction from a multiangle record

closest to the nadir (Fig. 6). Here sin- 1 d and Yd are the
corresponding polar angle and azimuth, respectively. A
negative value is assigned to d if the curve is located below
the reference line, i.e., the distances d and d correspond to
Dd - (dyd) and f- d - (d, 180 +Yd), respectively. In this
manner, the multiangle record is characterized in terms of
the slope, ys the distance, d, and its view directions
expressed in terms of the distance it. The horizontal axis
in Fig. lb shows variation in it. Based on the foregoing,
"typical patterns" of sun-view configurations can be iden-
tified by holding y, and d constant. For example, we split
the set of multiangle records into three patterns. Two of
these contain off-nadir directions (corresponding to + d and

-d) and the BRDF variation is mostly due to changes in the
view azimuth. The third represents records close to the
reference line and captures variations in the BRDF due to
changes in view polar angle.

The above parameterization depends on the slope y,
distance d and the solar zenith angle (SZA). The probable
illumination conditions are summarized in Table 3 (upper
part). For a given biome type, probable SZA range and Yd

are selected to include majority of available data (shown as
"Data Used" in Table 3). Then three patterns can be defined
depending on the value of d; for example, 0.5 < d < 1
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Fig. 5. POLDER data mean BRDFs and BRVFs for six biomes in red and NIR spectral bands.

("Pattern 1, +d"), 0.34<d< 0.5 ("Pattern 2, Od"), and
1 <d < 0.34 ("Pattern 3, d"). The intervals are

chosen such that they have an approximately equal prob-

Fig. 6. Parameterization of POLDER observation configurations on a
horizontal plane in cylindrical coordinates. A multiangular record through
the pole 0 is taken as a reference line and parameterized in terms of the
angle Sp, between this line and OX axis; d is the shortest distance between
the multiangle record and the pole 0; pd is the azimuth of the direction
fld-(sin d, Pd) closest to the nadir. Each view direction Q1(0, PV) from
the multiangle record is projected onto the reference line and expressed by
the distance p - sin 09 cos(p, - p) between the projection and the pole 0.
Thus, the POLDER record is parameterized in terms of Sp,, d, and p.

ability of occurrence (Table 3). The variation of d within
each class is ignored and represented by its mean value. The
directional variation is expressed in terms of the distance 1l.

In the case of Patterns 1 and 3, view polar angles are
approximated by the corresponding mean value of sin - 1 d.
Variations in it, therefore, are due to changing of azimuth. In
the case of Pattern 2, d 0 0 and thus variations in [t are due to
changing view polar angle. The three patterns cover more
than 70-80% of the available data. Table 3 also shows the
mean and standard deviation of d and ys for all the patterns.
The range of slope angles is, in general, less than 300. The
angular signatures can now be represented as BRDF varia-
tions of Patterns 1, 2, and 3.

The biome-specific BRDF averaged over pixels with
homogeneity factors greater than 90% is shown in Fig. 7
for the three angular geometry patterns. Two features of the
angular signature can be used to specify the angular vari-
ation of the reflected radiation: the magnitude of the BRDF
and its shape. Typically, the reflectance of a vegetation
canopy tends to vary between 0 and 0.2 at the red band and
between 0.1 and 0.4 at the NIR band. Broadleaf and needle
leaf forests have the lowest red reflectances, while their NIR
reflectance varies about the minimum (needle leaf forests)
and maximum (broadleaf forests) values of canopy reflec-
tances. This feature permits identification of these biomes
using the magnitude feature. Shrubs can be regarded as the
brightest biome, exhibiting almost the highest reflectances at
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Table 3
Geometrical characterization of POLDER data

All data Grasses and cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needle leaf forests

Sun angle (2)

Range 17-32 38 -53 17-32 23 -42 17-32 23 -38
Mean 23.7 (5.9) 46.2 (3.2) 24.4 (3.3) 33.0 (6.5) 23.9 (4.0) 30.3 (7.0)
Percent 86.9 69.7 99.8 89.9 95.5 84.9

Slope angle (2)

Range 25-65 5-45 25-65 5-45 20-60 10-50
Percent 78.0 71.8 92.5 80.2 79.2 80.7

Data used (%) 70.5 68.0 85.2 74.1 74.6 79.3
Pattern I ( +d)
sin d (2) 42.6 (10.8) 45.3 (11.2) 38.0 (9.0) 45.1 (10.0) 42.6 (10.4) 45.7 (11.4)
Slope (2) 39.9 (9.6) 23.1 (10.2) 35.4 (5.4) 22.0 (6.2) 34.0 (7.1) 24.8 (8.1)
Percent 30.0 28.2 32.8 26.4 30.5 25.6

Pattern 2 (Od)
sin i d ( -) 2.9 (13.5) 1.6 (14.5) 6.2 (13.8) 2.0 (13.6) 2.5 (15.0) 1.6 (14.8)
Slope (2) 52.5 (9.1) 26.9 (4.6) 50.9 (5.2) 34.1 (6.0) 50.7 (6.3) 37.2 (7.2)
Percent 38.2 32.3 46.7 26.9 31.8 28.2

Pattern 3 ( d)
sin id ( ) 42.6 (8.4) 43.2 (8.4) 43.3 (8.6) 45.3 (8.0) 41.8 (7.7) 43.3 (8.3)
Slope (2) 56.7 (7.8) 33.5 (3.5) 60.1 (4.0) 42.4 (3.5) 59.2 (4.0) 44.4 (5.2)
Percent 31.8 39.5 20.5 46.7 37.7 46.2

The numbers in the parenthesis are standard deviations. The numbers in bold indicate the data selected for further analysis in this study.

both red and NIR. On the other hand, savannas, which are
mixtures of grasses and woody vegetation, tend to exhibit
the lowest reflectances at these bands. The remaining
biomes, grasses and crops, have intermediate reflectance
magnitudes, that is, between shrubs and savannas.

As for the shape of the BRDF, shrubs have a distinct
shape with a sharp jump at about the upper and lower
bounds of 1t (Pattern 1 of POLDER observation configura-
tion). This corresponds to low sun (1t0 zz sin(500 )) and view
(11t sin(400 ) sin(600 )) polar angles. The view of the for-
ward scattering direction as determined by the distance
1tz sin( 500) (corresponding to azimuth z 1800) lies on
the principal plane, and thus, the BRDF takes on its local
maximum. The distance 11 z sin(50') (azimuth z 700) spe-
cifies a back scattering direction close to the hot-spot dir-
ection. The values of the BRDF vary about its global
maximum in this case. These two extreme situations are
responsible for the observed jumps in the canopy angular
signature. In the case of grasses and crops, the angular
signatures are nearly identical, thus their identification is
difficult. In the case of Pattern 2, the backscattering directions
lie in the planes close to the principal plane (cf. Table 3), and
thus, the hot-spot, although not well discerned, is recorded in
the POLDER data. It appears that there are biome-specific
features in both the magnitude and shape of the BRDF but
there is also considerable variation within a biome type from
changing geometry of view and illumination.

6. Angular signatures in spectral space

The angular signatures at different spectral bands are not
independent. To demonstrate their correlation, we treat a

multiangular record, which contains the angular variation of
BRDF as a function of view directions, as a curve on the
red-NIR spectral plane. Such curves are shown in Fig. 8
depicts the point corresponding to sin- 1 I-- 450. for the
six biomes from the three geometry patterns introduced
earlier. These signatures show four features that can be used
to distinguish the biomes: (1) location in the spectral space,
(2) inclination, (3) length, and (4) intercept. With the
exception of grasses and crops that tend to have identical
angular signatures in the red-NIR space, the signatures are
unique in terms of the above three metrics. The angular
signatures are nearly linear in the spectral space. In fact,
statistical analysis indicates a significant linear relation
between the red and NIR reflectances (Table 4).

Canopy reflectances having the same NDVI value lie on
a single line passing through the origin of the red-NIR
plane. The NDVI of all biomes, with the exception of
shrubs, is insensitive to the view directions. That is, the
intercept values from the regression are identical to zero.
This is further evidence for the insensitivity of NDVI to
view, and from reciprocity arguments, sun angle changes in
the case of dense vegetation canopies. The fact that shrubs
tend to have a nonzero intercept indicates NDVI sensitivity
to view and sun angle variations. This is because the surface
reflectances are nonlinear combinations of vegetation
(shrub) and ground reflectances. Theoretical arguments
further elucidating these concepts are presented in the
second part of this series (Zhang et al., in press; also see
Kauftnann et al., 2000). The view direction-averaged NDVI
values of the different biomes, shown in Table 4, indicate
the unique inclination of the angular signatures in the
spectral space, with the exception of grasses and crops.
The location of the biome data in the spectral space is also
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Fig. 7. Biome-specific BRDF signatures obtained from averaging over pixels with HF>90% for the three angular geometry patterns show in Fig. 6. Here, view
angle is defined as sin i p and azimuth is defined p,.

distinct as it can be ascertained from the mean red and NIR
reflectance values shown in Table 4. A methodology for
quantifying the three metrics characterizing the angular
signatures in spectral space is given in the next section.

The six biome types proposed by Myneni et al. (1997)
were defined in terms of vegetation structural, optical, and
background attributes that define variables admitted by the
radiative transfer. They argued that this linkage was needed
to establish a theoretical basis for the biome identification
with remote sensing data. This is similar to the consistency

theme mentioned previously. We note from Fig. 7 that the
grasses and cereal crops have a signature similar to broad-
leaf crops. Therefore, potentially five biomes can be iden-
tified with multispectral multiangle reflectance data. It is,
however, possible that with additional information, say in
the form of temporal variation of remote sensing data, this
confusion can be resolved, possibly by seasonality and
ground cover differences.

This is not to argue that global vegetation can be
classified into five biomes only with optical remote sensing
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data. It is possible that other unique signatures exist in the
data space that we have not identified. Therefore, we
examine below the angular signatures in spectral space of
vegetation cover types from a more detailed classification
(Hansen et al., 2000).

A 1-km land cover map (Hansen et al., 2000) was used to
derive land cover specific angular signatures from the
POLDER data. This classification includes 10 vegetation
cover types: evergreen needle leaf forest (ENF), evergreen
broadleaf forest (EBF), deciduous broadleaf forest (DBF),
mixed forest (MF), woodland (WL), wooded grassland
(WG), closed shrubland (CS), open shrubland (OS), crop-
land (CL), and grassland (GL). Deciduous needle leaf forest
is not predominant in North America; so, we exclude this
cover type. Thus, the major forest covers are ENF, EBF, and
DBF. The EBF is located mainly in Central America. The OS
represents vegetation in the high-latitude areas. The other
land covers are generally distributed in the middle of the
continent. The 1-km map was aggregated to 6-km resolution
as per homogeneity considerations discussed earlier.

The angular signatures of the 10 land covers are shown in
Fig. 9 in the red-NIR space. Fig. 9a depicts the signatures of
the forests. Fig. 9b shows the angular signatures of the
shrublands, grasslands, and crops. In both panels, the sig-

natures of WLs and WGs are included for better visualization
of forest signatures vs. the herbaceous vegetation covers.
The signatures of DBF and EBF have similar location and
slope in the spectral space. In the six-biome classification,
these land covers are aggregated into one biome type,
broadleaf forests. The biome and land cover signatures are
identical; for instance, compare the broadleaf forest biome
signature in Fig. 8 to the signature of EBF and DBF in
Fig. 9a. Likewise, the signature of the needle leaf forest
biome is comparable to the signature of the ENF. The MFs
are located in between the broadleaf and needle leaf biomes.
The location depends on the proportion of the two biome
types in the mixture. If that were the case, the signature of the
MF may be treated as a superimposition of the signatures of
the two forest biomes, but this needs further investigation.

The savanna biome is represented by WL and WG in the
Hansen et al. (2000) classification. These cover types have
identical signatures and are comparable to the signature of
the savanna biome, shown in Fig. 7. The signatures of GL,
CS, and crop cover types are indistinguishable and this
compares to an identical situation with respect to the
signatures of grasses and crops in the biome classification
scheme. The signature of the OS cover type is comparable
to the signature of the shrubs biome. Thus, with the
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Table 4
Characteristics of angular signatures in spectral space

Pattern Grasses and cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needle leaf forests

Slope
1 2.287 0.782 2.590 2.648 1.448 3.291
2 1.395 2.456 1.870 2.390 6.391 3.582
3 2.074 1.489 2.596 1.969 7.343 3.186

Intercept
1 0.065 0.115 0.036 0.001 0.252 0.032
2 0.113 0.322 0.078 0.028 0.017 0.015
3 0.089 0.059 0.025 0.047 0.006 0.029

Correlathon coefficient
1 .938 .893 .952 .885 .525 .883
2 .906 .964 .949 .902 .962 .969
3 .953 .747 .923 .889 .747 .971

Mean red reflectance
1 0.082 0.186 0.081 0.058 0.050 0.042
2 0.104 0.253 0.097 0.065 0.053 0.050
3 0.094 0.256 0.096 0.069 0.051 0.050

Mean NIR reflectance
1 0.253 0.260 0.245 0.153 0.324 0.171
2 0.258 0.303 0.260 0.184 0.355 0.193
3 0.285 0.321 0.273 0.183 0.368 0.190

Mean NDVI
1 0.510 0.168 0.505 0.449 0.733 0.605
2 0.426 0.088 0.455 0.476 0.741 0.591
3 0.503 0.113 0.481 0.453 0.757 0.581

Standard deviation
1 0.007 0.034 0.005 0.012 0.018 0.011
2 0.024 0.022 0.018 0.020 0.005 0.012
3 0.013 0.024 0.011 0.027 0.011 0.012

exception of the MF cover type, the other nine cover types
have five distinct angular signatures in the spectral space,
and these map to the five biome types proposed by Myneni
et al. (1997). This also implies that there would be even
fewer unique spectral signatures. It is, however, possible
that the cover types have distinct signatures in the spectral-
temporal space, as suggested by Hansen et al. (2000), but
this needs to be investigated.
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7. Slope and length indices

As mentioned previously, the biome-specific angular
signatures in the red-NIR spectral space can be character-
ized by three metrics: (a) their location in the spectral space,
which is mainly determined by the biome type (Fig. 4); (b)
inclination (slope and intercept) of the signature, which is
determined by leaf and soil optical properties and the
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Fig. 9. Angular signatures in the red-NIR spectral space of the 10 land covers from Hansen et al. (2000) 1 km land cover map of North America.
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structure of the canopy; and (c) the length of the signature,
which describes spectral variation in the shape of the BRDF.
A rigorous derivation of these interpretations using radiation
transport theory is given in the second part of this series.

The slope of the angular signature in spectral space is
quantified by the ASSI (Eq. (4)), defined as

ASSI - 1 a- &BRDFNIR([I) d|
Inax W[in &l. rwin I 9BRDFred(m) I

I | BRDFNIR(K, )
vi I BRDFred(K +)

BRDFNIR(K) K+I 1v |

BRDFred(K) [tN -[ ti

(4)

where it is the distance defined in Fig. 6. This index was
evaluated for all pixels with homogeneity factors of 100%.
The mean and standard deviations for the six biomes are
shown in Table 5. Small variations in the red band and large
variations in the NIR band result in large values of ASSI.
Therefore, the forest biomes have larger ASSI values
compared to the other biomes although there is considerable
variability within a biome type. The ASSI can also be taken
as the slope of the mean angular signature in the spectral
space, if it is a linear or near-linear function. For the pixel-
mean signatures shown in Fig. 8, the slope and intercept
values are given in Table 4. The forest biomes show a larger
slope, consistent with detailed pixel level calculations
presented in Table 5. Shrubs show the largest intercept,
which as mentioned previously, is indicative of the
sensitivity of NDVI to view angle changes.

The length of the angular signature in spectral space can
be characterized by the ASLI (Eq. (5)), defined as

SLI = 2 a (dBRDFI7d (k)) 2
+ (dBRDFINJ (k))

2  
2 NEI

Am m Plm j AN WI vi = I

X(BRDFEd(PV ,) BRDFEd(PV))2 + (BRDFNIR (V i) BRDFn (V))2

(5)

where it is the distance defined in Fig. 6. This index
measures the degree of anisotropy in the reflected radiation
field that is dependent on the heterogeneity of the medium.

Table 5

ASSI of biomes

Grasses and Broadleaf Broadleaf Needle
cereal crops Shrubs crops Savannas forests leaf forests

Pattern I (+ d)
Mean 2.111 1.996 2.163 2.024 2.569 2.484
S.D. 1.097 1.086 1.080 0.953 1.626 1.363

Pattern 2 (0d)
Mean 1.682 1.957 2.046 2.398 4.480 3.161
S.D. 0.896 1.023 0.839 1.313 2.590 1.703

Pattern 3 ( dd)
Mean 1.963 2.113 2.323 2.463 4.100 2.990
S.D. 1.080 1.201 1.056 1.368 2.749 1.317

Table 6
ASLI of biomes

Grasses and Broadleaf Broadleaf Needle
cereal crops Shrubs crops Savannas forests Leaf forests

Pattern I (+ d)
Mean 0.119 0.226 0.109 0.106 0.134 0.121
S.D. 0.055 0.119 0.047 0.063 0.068 0.068

Pattern 2 (Od)
Mean 0.162 0.281 0.170 0.208 0.209 0.201
S.D. 0.070 0.146 0.063 0.153 0.095 0.115

Pattern 3 ( dd)
Mean 0.137 0.271 0.146 0.140 0.187 0.151
S.D. 0.048 0.145 0.047 0.066 0.072 0.055

For the case of a homogeneous medium, defined as an
isotropic reflector, the ASSL is zero because the angular
signature in spectral space is a point. Vegetation canopies
exhibit structural features such as preferred orientation of
foliage elements, mutual shadowing, vertical layering, and
spatial discontinuities, which contribute to the anisotropy of
the scattered radiation field.

POLDER measurement configuration Patterns 1 and 3
characterize BRDF variations with respect to view azi-
muth, and similarly Pattern 2 with respect to view polar
angle (Fig. 7). Correspondingly, the length indices eval-
uated from BRDF variations due to view azimuth and
polar angle changes capture lateral and vertical heterogen-
eity of the medium. The mean length indices for the three
measurement configuration patterns are shown in Table 6
for the six biomes. These were evaluated from BRDF data
of all pixels with homogeneity factors of 100%. Shrubs
have the highest length index values, relative to other
biomes, in all three measurement configurations, thus
indicating a high degree of both lateral and vertical
heterogeneity. The forest and savanna biomes exhibit larger
Pattern 2 length index magnitudes compared to grasses and
crops. This indicates a higher degree of vertical heterogen-
eity in the case of the former.

8. Statistical analysis of the information content of
POLDER data

Central to the idea of using directional data from POL-
DER is the information content of the various directional
variables. To assess the value and dimensionality of the
directional variables, a number of statistical analyses were
conducted. In particular, we were curious to know if the

Table 7
MANOVA for six biomes

Red NIR SI LI II S2 L2 12 S3 L3 13

F170 31 ' 1289 2937 5.74 982 4723 589 562 2759 377 229 2821
F 64072 2505 F value at level a-.001; F170 ,5-4.2; F 64072 -2.2
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Table 8
Correlation matrix for six biomes

Red NIR SI LI II S2 L2 12 S3 L3

NIR .57
SI .06 .011
LI .59 .30 .06
II .16 .54 .005 .06
S2 .30 .02 .09 .18 .22
L2 .47 .31 .02 .54 .03 .21
12 .02 .56 .02 .05 .71 .07 .04
S3 .28 .05 .04 .15 .15 .20 .09 .10
L3 .26 .16 .01 .27 .04 .04 .25 .01 .26
13 .14 .70 .004 .05 .70 .16 .13 .65 .01 .06

Bold numbers indicate significant correlations.

directional signal of the six biomes of interest could be
captured by a simpler subset of the directional variables.

The multiangle measurements from each POLDER pixel
can be represented as the spectral mean BRDF values and
three patterns of angular signatures, each of which are
represented by three angular signature characteristics-
slope (S), length (L), and intercept (I). Therefore, a total
of 11 variables measure the spectral and angular signature
of a pixel. Multivariate analysis of variance (MANOVA)
tests the null hypothesis that the means of the six biomes
are the same. Each variable is tested individually and then
all variables are tested together. The results shown in
Table 7 indicate a high significance level for all variables
(F value). This result allows rejection of the highly
conservative null hypothesis that the means of the six
biomes are the same. Table 7 shows that the two spectral
bands and the three intercepts have higher F values than the
other variables, and thus are likely to be the most useful in
separating these biomes. The slope for Pattern 1 (Si) has
the lowest F value and may not prove as useful as the other
variables. Given highly significant results for each variable,
the question of the dimensionality of the directional data
and possible redundancy between the nine directional
variables arises.

015

0.4 :
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To determine if strong correlation exists among the
variables, a correlation matrix was calculated (Table 8).
In general, it indicates that the correlation between the
variables is not very high. This result indicates little
redundancy among the directional variables. One possible
exception is that all three intercept indices are correlated,
indicating that it may not be necessary to use all three in
image classification efforts. Examination of the correlation
matrix for the individual biomes indicates that for shrubs
(not shown here), there are higher correlations among
almost all variables, which indicate that the dimensionality
in data for shrubs is less than other biomes. The result of
little correlation between variables was also confirmed by a
principal component analysis (PCA) conducted for each
biome, individually and for all the biomes combined. This
zero-correlation rotational transformation is frequently used
to remove correlation among variables and reduce the
number of variables used in analyses. Fig. 10 shows the
variance distribution among all the 11 principal compo-
nents for the different biomes and the aggregated PCA for
all biomes. The pattern of eigenvalues for the six biomes
indicates that there is considerable dimensionality in the
data. The fifth components still contain as much as 10% of
the total variance in the dataset, a much larger fraction that
would occur in a dataset with 11 variables if extensive
correlation existed between variables. While all nine dir-
ectional variables may not be necessary to characterize the
BRDF for improving image classification, it does imply
that BRDF shapes are quite complex and may require
several variables. Further examination of the pattern of
eigenvectors for all six biomes in Table 9 indicates several
interesting patterns. The first component, and by definition
the component that explains the most variance, is domi-
nated by the intercept variables and the NIR band. This
result is not surprising as the MANOVA showed these four
parameters to have the highest F values, and the correlation
matrix indicates they are correlated. The implication is that
there is considerable information content in the intercept

2 3 4 5 6 7 8 9 10 11

PFincipalI C oi]lIp..llelit

Fig. 10. The variance distribution among principal components for different biomes.
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Table 9
Eigenvectors of PCA

Component Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cii

Red .27 .47 .11 .36 .38 .17 .15 .60
NIR .52 .25 .28 .18 .28 -. 69
Si .11 .96 .23
LI .21 .44 .11 .22 .30 .13 .73 -. 20 e .13
II .40 .36 .17 .13 .29 .22 .65 .34
S2 .32 .25 .17 .86 .21
L2 .23 .38 .12 .66 .27 .51
12 .41 .28 .26 .75 -. 30
S3 .22 .68 .15 .22 .20 .60
L3 .13 .20 .65 .11 .45 .55
13 .47 .20 .11 .13 .56 -. 60 .13
Proportion of variance .28 .23 .12 .09 .07 .06 .05 .04 .03 .02 .01
Cumulative variance .28 .51 .63 .72 .79 .85 .90 .94 .97 .99 1.00

values, but all three may not be necessary. The second
most striking pattern is that Components 3, 4, and 5 are
virtually devoid of contribution from the spectral data and
hence are essentially directional variables. Each of these
components is dominated by different combination of kinds
of directional data (e.g., slope, length, and intercept) and
the three patterns.

One overall interpretation of these results is that the
shapes of BRDFs are complex and it takes many variables
to effectively parameterize them and capture their informa-
tion content. The idea of using three variables (slope, length,
and intercept) as well as multiple chords crossing the BRDF
is supported by the high dimensionality of the data as
indicated in the PCA results and the significance of each
of the variables in the MANOVA. In summary, the statistical
analyses indicate that both spectral and angular variables are
significantly different among six biomes and they all convey
information valuable for identifying biomes. Overall, these
results strongly confirm the idea that incorporation of the
directional variable should improve biome classification.

30

0

.5

20

10

.0
0

9. Test for the consistency argument

The estimation of LAI from reflectance measurements
requires accomplishing a solution of the radiation transport
problem in the inverse mode, which is a well-known ill-
posed problem (Kimes, Knyazikhin, Privette, Abuelgasim,
& Gao, 2000). It is essential to reduce the dimensionality of
this problem, that is, to reduce the number of unknowns.
This is done by assuming knowledge of some parameters.
These can be either conservative parameters (e.g., leaf
optical properties) or those that are difficult to measure
(e.g., leaf normal orientation). These parameters are
assumed to vary by biome type only and a global distri-
bution of biome types is used as a surrogate for the global
distribution of these parameters. Hence, the use of biome
maps in retrieval algorithms (Knyazikhin, Martonchik,
Diner, et al., 1998; Knyazikhin, Martonchik, Myneni,
et al., 1998), and also in many global models of land surface
processes (Bonan, 1998; Sellers et al., 1996) and biogeo-
chemical cycles (Potter et al., 1993).
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Fig. I1. LAI and soil patterns constituting the solution distribution function of the MISR LAI algorithm.
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The problem of retrieving LAI from vegetated surface
reflectances (BRDF) can be formulated as follows (Knya-
zikhin, Martonchik, Diner, et al., 1998): evaluate LAI from
information on measurement geometry, multispectral multi-
angle reflectances, and their uncertainties. The algorithm
compares observed and modeled canopy reflectances for a
suite of canopy structures and soil patterns that represent a
range of expected natural conditions. All canopy/soil
patterns for which the modeled and observed BRDFs differ
by an amount equivalent to or less than the corresponding
uncertainty are considered as acceptable solutions. This is
called the solution distribution function. The mean values
of LAI obtained from averaging over all acceptable sol-
utions and their dispersions are taken as the final solution
and retrieval uncertainty (Knyazikhin, Martonchik,
Myneni, et al., 1998; Wang et al., in press; Zhang et al.,
2000). Vegetation structural attributes are parameterized in
terms of variables that transport theory admits, i.e., this
algorithm is compatible with the biome definitions. The
model reflectances are evaluated from solution of the
three-dimensional radiative transfer equation and expressed
as a function of sun-view geometry, canopy/soil pattern,
and biome type.

The angular signatures shown in Fig. 8b represent BRDF
variations as a function of view polar angle in the red-NIR
POLDER band space. The biome-specific signatures were
obtained by averaging over all pixels with homogeneity
factors of 100%. We note that the signatures of grasses and
crops are indistinguishable. The signatures of the other
biomes can be treated as distinct (cf. statistical analysis
above). The following question tests the consistency re-
quired between biome definitions with the physics of remote
sensing problem. Can distinct (needle leaf and broadleaf
forests) and similar (grasses/cereal crops and broadleaf
crops) biome signatures result from canopies with identical
LAI values?

The biome signatures shown in Fig. 8b were input to
the MISR LAI algorithm. Band and angle-averaged uncer-
tainties in POLDER BRDFs were assumed to be equal to
20%; this corresponds to the mean uncertainty (Table 1,
Pattern 2). The resulting LAI and soil pattern distributions
for each of the six retrievals are shown in Fig. 11. The
mean model reflectance signatures of these solutions are
shown in Fig. 12 as angular signature in spectral space for
comparability. The LAI values and soil patterns constitut-
ing the solution distribution of the two forest biomes are
comparable although their reflectance signatures were
distinct. This indicates that the information provided by
the biome map (biome definitions) and that embedded in
the model calculations (physics of the problem) was
critical to associating these identical solutions with distinct
reflectance patterns. The solution distribution function of
grasses/cereal crops and broadleaf crops indicates similar
LAI values but different soil patterns, in spite of the fact
the reflectance signatures input to the algorithm in this
instance were nondistinguishable. The broadleaf crops are
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Fig. 12. Modeled angular signatures in the red-NIR spectral space from the
MISR LAI algorithm.

associated with darker soils and the grasses with brighter
soils. Again, we conclude that the information provided by
the biome map and that embedded in the model calcula-
tions was critical to associate these different solutions with
similar reflectance patterns. These results argue for the
consistency required between biome definitions and their
signatures with the physics of the spectral-angular reflec-
tance data, for were it not for this consistency, the
retrievals would be inaccurate.

10. Concluding remarks

The insights gained from present land cover classifica-
tion activities suggest integration of multiangle data into
classification attempts for future progress. Land cover types
that exhibit distinct signatures in the space of remote
sensing data facilitate unambiguous identification of cover
types. In this first part, we develop a theme for consistency
between cover type definitions, uniqueness of their signa-
tures, and physics of the remote sensing data. Angular
signatures in spectral space (Fig. 8) provide a cogent
synthesis of information from spectral and angular domains
(Figs. 3 and 7). These signatures can be characterized in
terms of their (a) location in the spectral space, which is
mainly determined by the biome type (Fig. 4); (b) inclina-
tion (slope and intercept), which is determined by leaf and
soil optical properties and the structure of the canopy; and
(c) length, which describes spectral variation in the shape of
the BRDF. The statistical analyses indicate that both spectral
and angular variables are significantly different among six
biomes and they all convey information valuable for iden-
tifying biomes. The consistency requirement guarantees
valid biophysical retrievals because the information pro-
vided by the biome map is consistent with the physics of the
problem and data (Figs. 11 and 12). Our approach was
tested with POLDER data. The availability of multiangle
data of higher resolution, less uncertainties, and wider
angular coverage can reduce the effect of biome mixture
and increase the information content of angular signatures in
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spectral space that, in turn, will result in a more accurate
biome classification and can lead to more biome parameters
that are better specified. Part II provides a theoretical basis
for this consistency requirement (Zhang et al., in press).
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