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Abstract

The insights gained from present land cover classification activities suggest integration of multiangle data into classification attempts for
future progress. Land cover types that exhibit distinct signatures in the space of remote sensing data facilitate unambiguous identification of
cover types. In this two-part series, we develop a theme for consistency among cover type definitions, uniqueness of their signatures, and
physics of the remote sensing data. In the first part, Zhang et al.'s [Remote Sens. Environ., in press.] empirical arguments in support of the
consistency principle were presented. This part provides a theoretical justification of the consistency requirements. Radiative transfer best
explains the physics of the processes operative in the generation of the signal in the optical remote sensing data. Biome definitions given in
terms of variables that this theory admits and the use of the transport equation to interpret biome signatures guarantee the consistency
requirements. It is shown in this paper that three metrics of the biome angular signature in the spectral space -location, angular signature
slope (ASSI), and length (ASLI) indices -are related to eigenvalues and eigenvectors of the transport equation. These variables allow a
novel parameterization of canopy structure based on the partitioning of the incident radiation among canopy absorption, transmission, and
reflection. Consistency between cover type definitions and uniqueness of their signatures with the physics of the remote sensing data is

required not only to reduce ambiguity in land cover identification, but also to directly relate land cover type to biophysical and
biogeochemical processes in vegetation canopies. (C 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The solar radiation reflected by a vegetation canopy and
measured by satellite-borne sensors results from interaction
of photons traversing through the foliage medium, bounded
at the bottom by a radiatively participating surface (soil,
understory, etc.). To estimate the canopy radiation regime,
three important variables must be correctly formulated
(Ross, 1981). They are (1) the architecture of individual
plant or tree and the stand; (2) optical properties of the
vegetation elements; and (3) reflective properties of the
ground beneath the canopy. Photon transport theory aims
at deriving the solar radiation regime, both within the
vegetation canopy and the exitant radiance, using the above-
mentioned attributes as input data. The success of remote
sensing of vegetation depends, to a high degree, on being
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able to formulate a particular remote sensing problem, e.g.,
identification of the land cover type or estimation of surface
biophysical variables, in terms of the abovementioned
variables. Photon transport theory provides the most logical
linkage between a specific remote sensing problem and the
physics of the processes operative in the generation of the
signal in the optical remote sensing data. This idea underlies
the principle of consistency between biome definitions and
uniqueness of their signatures with the physics of remotely
sensed data formulated in the first part of our two-part series
(Zhang, Tian, Myneni, & Knyazikhin, in press). The object-
ive of this paper is to provide a theoretical basis for the
consistency requirement.

The transport equation in three spatial dimensions is the
appropriate starting point for our arguments for a theory for
land cover identification. The bidirectional reflectance dis-
tribution function (BRDF) is defined as the solution of the
three-dimensional transport equation at the upper canopy
boundary along upward directions. We start with the simplest
case when reflectance of the ground below the vegetation is
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zero and define variables required to characterize the inter-
action and transport of photons within the canopy and to
uniquely resolve the transport equation. The directional
hemispherical reflectance (DHR) is the hemispherically
integrated BRDF, and is used to define the location of
remotely sensed data in the spectral space. Knyazikhin,
Martonchik, Myneni, Diner, and Running (1998) precisely
derived the dependence of DHR on wavelength and
expressed it uniquely as a simple function of the wave-
length-dependent leaf albedo and wavelength-independent
canopy-specific eigenvalue of the transport equation. This
was recently validated with field measurements by Panferov
et al. (2001). The eigenvalue governs the shortwave energy
conservation in vegetation canopies; that is, the partitioning
of incident radiation among absorption, transmission, and
reflection. Thus, the energy conservation law determines the
location of reflectance data in the spectral space in the case
of vegetation canopies with a dark background. Note that
DHR is a standard product of the multiangle imaging
spectroradiometer (MISR) (Diner, Beckert, et al., 1998;
Martonchik et al., 1998) and moderate resolution imaging
spectroradiometer (MODIS) (Justice et al., 1998; Lucht &
Schaaf, 2000) data. Two metrics, angular signature slope
and length indices (ASSI and ASLI, respectively), which
characterize the angular and spectral signatures of vegeta-
tion canopies are related to the eigenvalue of the transport
equation and their properties are discussed below.

The three-dimensional radiation field in a scattering and
absorbing medium bounded at the bottom by a reflecting
surface can be expressed in terms of solutions of two surface-
independent subproblems: the radiation field calculated for
the case of a completely absorbing surface below the medium
and the radiation field in the same medium generated by
anisotropic wavelength-independent sources located at the
bottom of the medium (Knyazikhin et al., 1998; Marshak,
Knyazikhin, Davis, Wiscombe, & Pilewskie, 2000). We use
this property to extend our analysis to the general case of a
reflecting background beneath the vegetation.

Our theoretical investigation is based on the assumption
that the transport equation can describe the radiative regime
in vegetation canopies. However, it has been indicated by
many investigators that the transport equation in its original
form (Ross, 1981) cannot describe the radiative regime in
vegetation canopies because it does not account for the hot-
spot effect, i.e., a sharp peak about the retrosolar direction
(Knyazikhin, Marshak, & Myneni, 1992; Kuusk, 1985; Li &
Strahler, 1992; Marshak, 1989; Myneni, Marshak, & Knya-
zikhin, 1991; Nilson, 1991; Verstraete, Pinty, & Dickenson,
1990). With a simple example, we demonstrate that the solu-
tion of the transport equation contains a singular component
that was ignored in all previous studies on three-dimensional
radiative transfer problems, leading to the erroneous state-
ment on inapplicability of the transport equation. This
component describes the hot-spot effect. This justifies the
use of the transport equation as the basis for interpretation of
remotely sensed data acquired over vegetated land surface.

2. Signatures of vegetation in the case of an
absorbing ground

Consider a vegetation canopy confined to 0 < z <H. The
surface z-0 and bottom z-H constitute its upper and
lower boundaries. The spectral composition of the incident
radiation is altered from interactions with phytoelements.
The magnitude of scattering by the foliage elements is
characterized by the hemispherical leaf reflectance and
transmittance, defined as follows: the hemispherical leaf
transmittance (reflectance) is the portion of radiation flux
density incident on a leaf surface that is transmitted
(reflected). Their sum is denoted as the hemispherical leaf
albedo. The reflectance and transmittance of an individual
leaf depends on wavelength, tree species, growth condi-
tions, leaf age, and its location in the canopy. For simpli-
city, leaf albedo is assumed to be spatially independent,
and the ratio of leaf transmittance to leaf albedo independ-
ent of wavelength. We start with the simplest case-the
reflectance of the ground below the vegetation is zero.
Results presented in this section are required to extend our
analysis to the general case of a reflecting ground below
the vegetation. Let a parallel beam of intensity c>, be
incident on the upper boundary. The governing transport
equation is

£ . VIx(r, £) + uL(r)G(r, D)Ix (r, £)

(1)

and the boundary conditions are

I,(ro, Q) = I [to l b(n -no),

for downward directions,

Ix(rH, D) - 0, for upward directions.

(2)

(3)

Here, the vector r denotes the Cartesian triplet (x,y,z) with its
origin at the canopy top; ro and rH denote points on the
upper and lower boundaries, respectively. The unit vector Q
is expressed in spherical coordinates with respect to ( Z)
axis and cos- 1 [t and q are its polar angle and azimuth.
Do0 ([to, to) is the direction of the parallel beam; IX (in
sr - 1) is the ratio of the monochromatic radiance at r in the
direction Q at wavelength X to incident flux cxltol, where
cos - 1 [o is the solar zenith angle. UL is the leaf area density
distribution function. G is the projection of leaf normals at r
onto a plane perpendicular to the direction D. The symbol F
denotes the area scattering phase function normalized by the
leaf albedo Lix. Given the assumption above regarding the
leaf spectral transmittance and albedo, this variable does not
depend on wavelength (Knyazikhin & Marshak, 1991). A
precise description of variables used can be found in
Myneni (1991) and Ross (1981). Below, the formulation of
Myneni (1991) is adopted.
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The BRDF is the directional radiance reflected from a
target divided by the irradiance (incident flux) illuminating
the target at a single incident angle (Nicodemus, Richmond,
Hsia, Ginsberg, & Limperis, 1977). For a vegetation canopy
bounded below by a black surface, the BRDF is the solution
Ix of the boundary value problem (Eqs. (1)-(3)). Note that
Ix depends on values of the spectral leaf albedo that in turn
depend on wavelength. It allows the parameterization of
BRDF in terms of leaf albedo rather than wavelength.
Therefore, the wavelength dependence will be suppressed
in further notations. The value of leaf albedo will be added
to the argument list of the solution of Eqs. (1)-(3).

We investigate spectral and angular variation in BRDF
using operator theory (Richtmyer, 1978; Vladimirov, 1963)
by introducing the differential and integral operators (L and
S operators, respectively; Eq. (4))

LI, = £ VIL + uL(r)G(r, D)Ij(r, D);

condition of orthogonality. The transport equation has a
unique positive eigenvalue that corresponds to a unique
positive eigenvector. This eigenvalue is greater than the
absolute magnitudes of the remaining eigenvalues. This
means that only one eigenvector, say p0, takes on positive
values for any r and D. Fig. 1 shows an example of the
positive eigenvector of Tevaluated by the Kellogg's method
(Riesz & Sz.-Nagy, 1990).

2.1. Location of canopy reflectances in spectral space

The location of reflectance data in spectral space is an
important source of information about the vegetation can-
opy conveyed by multiangle and multispectral satellite data.
The DHR, defined as

r(w) -( I2 (ro, D)IItId )I
~ 275, 0

(8)

(4)
SI, = uLL(r) - F(r, D' - f)I,(r, D')dfi'.

4 7

It should be emphasized that the differential and integral
operators do not depend on leaf albedo. The solution I, of
Eqs. (1)-(3) can be represented as the sum of two
components, viz., I -Q+ y. Here, the wavelength-inde-
pendent function i'ojQ is the probability density that a
photon in the direct beam will arrive at r along Do without
suffering a collision. It satisfies the equation LQ - 0 and the
boundary conditions (Eqs. (2) and (3)). Note that Q contains
the Dirac delta function b(f -i 0 ), and thus, it takes zero
values in all directions except no. The second term
describes photons scattered one or more times in the
canopy It satisfies Ly, -uSy, w+SQ and zero boundary
conditions. By letting T L -1S, the latter can be trans-
formed to

y, - wTy, + wTQ. (5)

Substituting y, -I, Q into Eq. (5) results in an integral
equation for I, (Bell & Glasstone, 1970; Vladimirov, 1963):

L, wTIL = Q. (6)

It follows from Eq. (6) that I, wTI, does not depend on w
and involves the validity of the following relationship

is used to specify the location of multiangle data. Here, ( )o
denotes the average over the upper canopy boundary. Let
t(w) and a(w) be canopy transmittance and absorptance
corresponding to leaf albedo w, i.e.,

t(w) = ( / I. (m, D) It I dQ)HI

a (w)
(1 w) fv dr f4, u(r)LG(r, D)I, (r, D)df

S

(9)

(10)

Here, ( )H denotes the average over the canopy bottom, Vis
the domain in which the canopy is located, and S is area of

o I -

)( -

06 -

014 -

02 -

(7)

where I, and I, are solutions of Eqs. (1)-(3) corresponding
to leaf albedos w and a, respectively.

An eigenvalue of the operator T is a number p such that
there exists a function p that satisfies t pTp. Kaufmann
et al. (2000), Knyazikhin et al. (1998), and Panferov et al.
(2001) defined the eigenvalue and eigenvector problem for
the integro-differential form of the transport equation spe-
cified in Eq. (1) that is equivalent to the above formulation.
Under some general conditions (Vladimirov, 1963), the sets
of eigenvalues Pk (k 0, 1, 2,.. .) and eigenvectors p#r,f)
(k= 0, 1, 2,. . .) are a discrete set; the eigenvectors satisfy the

0

9( -6(0 3( 3 30 60

Polar angle
90

Fig. 1. Positive eigenvector epo(ro,Q) of the operator T=L IS at the
canopy top and in upward directions. Polar angles are shown with a
positive (negative) sign if the azimuth of the upward direction is 0 (180 ).
The positive eigenvalue is p=0.785. Calculations were performed for
homogeneous canopy, UL(r) LAI/H, and uniform leaves, G 0.5;
F(u)-(3u)) 1(1 y)(sin U U cos u) y cos u/3. Here, LAI is the leaf
area index, u is the scattering angle, and y is the ratio of leaf transmittance
to leaf albedo. LAI and y were set to 4 and 0.46, respectively. In the case of
uniform leaves, the eigenvector does not depend on azimuth.
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the upper canopy boundary. Variables (Eqs. (8)-(10)) are
related via the energy conservation law as

t(w) + r(w) + a(w) 1; (11)

that is, the radiation absorbed, transmitted, and reflected by
the canopy is equal to radiation incident on the canopy. Let
i(w) be canopy absorption a(w) normalized by leaf
absorption 1 -, i.e.,

i(w) a(w) 1 t(w) r(w) (12)
1 w L 1 w L

For a vegetation canopy bounded at the bottom by a black
surface, this variable is the average number of photon
interactions with the leaves before either being absorbed or
exiting the medium. We term this canopy interception.

Eq. (7) allows a relationship between the maximum
eigenvalue po and canopy interception to be established.
Multiplying this equation by the extinction coefficient
o uLG and integrating over V and all directions £
results in

i(w) wqj(w)i(w) - i(a) &qj(ot)i(ot). (13)

Here,

qj(w) =f dr 41 
UL (r)fG(r, D)U df1 (14)

i(wj) .S

where p TI, and I, is the solution of Eqs. (1) -(3). It can
be shown that qj(w) -po, where po is the positive eigenvalue
of the operator T (Knyazikhin et al., 1998). This implies that
the ratio (Eq. (14)) is invariant with respect to the
wavelength, and the value of po is determined by intrinsic
structural properties of the vegetation canopy. Multiplying
Eq. (7) by [tj, integrating over all downward directions and
averaging over the canopy lower boundary, one obtains a
similar relationship for canopy transmittance, with another
wavelength-independent constant pt:

t(w) wptt(w) = t(Oc) ctptt(o). (15)

Panferov et al. (2001) investigated the spectral-invari-
ance property of canopy interception and transmission in the
general case (i.e., without the previously mentioned assump-
tion regarding the leaf optical properties) and confirmed it
with field measurements. It was demonstrated that the
variables po and Pt govern the shortwave energy conser-
vation in vegetation canopies; that is, the partitioning of
incident radiation among canopy absorption, transmission,
and reflection. A similar relationship, however, cannot be
derived for canopy reflectances (Panferov et al., 2001),
because Q-0 for upward directions, and thus, the integ-
ration of Eq. (14) over upward traveling directions does not
specify a wavelength-independent coefficient.

Thus, given po and Pt and canopy interception (i(a)) and
transmittance (t(a)) at a reference leaf albedo a, one can
evaluate these variables for any leaf albedo. These variables,

Po, Pt, t(a), and i(a), are determined solely by the structural
properties of vegetation. The DHR can be evaluated via the
energy conservation law (Eq. (11)). In the case of dense
canopies, Eqs. (11), (13), and (15) determine the location of
reflectance data in the spectral space as a function of leaf
albedo and canopy structure. This facilitates the linkage
between land cover type, expressed in terms of these
variables, to biophysical and biogeochemical processes in
vegetation canopies.

2.2. ASSI and ASLI

In terms of the transport theory, the BRDF is the solution
yt of Eq. (5) for diffuse radiation in upward directions and
at the upper canopy boundary, i.e., BRDF - (,(rol))o. To
characterize the scattering process within the canopy, the
following function is introduced (see Eq. (16)) (Kaufhann
et al., 2000)

(16)pn,j(rf) -Py,
Y2~

If the solution yt is treated as a source within the vegetation
canopy, T'y, describes the intensity of photons from this
source scattered n times and attenuated by the vegetation
canopy. rj, is the ratio between the intensity of n times
scattered and attenuated radiation to yt. It follows from
Eq. (5) that 0 < UliT, < 1 at any spatial point and in any
direction. The function Tl , is related to the eigenvalue po as
follows (Kaufmann et al., 2000; Knyazikhin, 1990;
Krasnoselskii, 1964): the sequences,

a,n hbn - \suppj,, 2 (17)

converge to the maximum eigenvalue po of the operator T
from below and above; that is, a, <po < bh. The supremum
and infinum in Eq. (17) are taken over all spatial points and
directions for which uL(r) $0. Thus, the values of the
function rp, vary about po' and the interval [anZ,bhn] of its
variation becomes arbitrarily small as n tends to infinity.

The solution yt can be expanded in Neumann series as
(Knyazikhin & Marshak, 1991)

±JTQ + L(w2T2Q + Li}3T3Q + ± + JnTTnQ

+nTnQ(LTQ+J2T2QT 3 Q+ +JT3T+JT 2)

wTQ + i2T 2 Q + J3T3Q + + )nTnQ + LnTn,,p

lwTQ + 2T2hQ + rlT3Q + th+ ajnTnQ + n

It follows from these relationships that

TQ+wT 2Q+}2T 3 Q + + . w+ n 1TnQ
Yt = w 1 - nln,, (18)

Eq. (18) establishes the required relationship between the
BRDF and the eigenvalue of the operator T: for
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Fig. 2. Function rh, at (a) red and (b) NIR wavelengths for various values of the cumulative leaf area index u LAI zlH. The solar zenith angle is 15'. Other
parameters are the same as in Fig. 1. The eigenvalue po - 0.785 of the operator T is shown as a bold straight line.

sufficiently large n, the function rj, can be replaced with
po'. The function rj, was introduced in Kaufmann et al.
(2000) and used to assesses the effect of changes in solar
zenith angle on reflectances in Channels 1 and 2 and
normalized difference vegetation index (NDVI) from the
AVHRR Pathfinder land data set. The theoretical and
empirical analyses indicated that for dense canopies, l

is minimally sensitive to solar zenith angle changes and
this sensitivity decreases as leaf area increases. If the
reciprocity principle is valid for vegetated surfaces, this
function should possess the same properties with respect
to view angles, i.e., one may expect small variation in
Tl due to view angle changes. Fig. 2 shows the function
fli at red (Lred 0.2) and near-infrared (NIR; LNIR 0.92)
spectral bands. We focus on Eq. (18) for n 1 in our
study. It should be noted, however, that this case might
not provide a full interpretation of remotely sensed
surface reflectances.

(a)

The BRDF can be expressed in terms of the function
nli as

F
-Li1 - li,

(19)

Here, F TQ is the probability density that a photon from
the direct beam, having been scattered by a phytoelement
will escape the canopy. The probability density function F
mainly determines the shape of BRDF. The ratio between
BRDFs at NIR and red spectral bands, or the simple ratio
(SR, Eq. (20)), results in the cancellation of F; thereby
decreasing its sensitivity to view angle changes, i.e.,

(20)SR(n) - YNIR NIR 1 Wredfl1 red

Yred Wred 1 -NIRflINIR

The POLDER (polarization and directionality of the Earth's
reflectances) surface reflectances demonstrate this effect:

(b)
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Fig. 3. (a) Angular signature of canopy reflectance on the red-NIR plane and (b) SR. All parameters were set to the same values as in Fig. 2. Arctangent of the
SR is the angle between the line that connects a point on the signature and the origin of coordinates, and the horizontal axis. In this example, SR varies between
its maximum (11.02) and minimum (8.37) values; its mean and standard deviation are 9.96 and 0.69, respectively. Thus, the linear function
BRDFR(Q)-9.96-BRDFred(Q) approximates the angular signature within uncertainty value of 0.69-BRDFrd that corresponds to relative uncertainty
6BRDFN R/BRDFN R = 0.069.
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although some BRDFs exhibit a hot-spot-like behavior
(Fig. 7 in Zhang et al., in press), their angular signatures in
the spectral space are almost linear (Fig. 8 in Zhang et al., in
press). Fig. 3 demonstrates another example of variation in
BRDF and SR. Values of BRDFs at red and NIR spectral
bands are related as BRDFNIR(•) SR(f) BRDFred(1).
The coefficient SR(f) is slightly sensitive to £ and thus one
can replace it by its mean value k. Based on the Minkowski
inequality (Bronstein & Semendyayev, 1985), the following
estimate of the accuracy (Eq. (21)) can be performed

dBRDFNIIR j [(SRNIR(f) k) BRDFred]2 dD

< j 7 [SRNMR(f) k]2df

TV 2g2

x [ BRDF 2 e dD
VJ27+ d

= BRDFredjj, (21)

where ai is the standard deviation of the SR and
BRDF2d f2 + BMJFred(F2 )df. This explains the near-
linear relationship between BRDFs at red and NIR
spectral bands observed in POLDER data in the case of
dense canopies.

Fig. 4 demonstrates the function wjTl at the NIR spectral
band derived from airborne multiangle imaging spectroradi-
ometer (AirMISR) (Diner, Barge, et al., 1998) surface reflec-
tance acquired over grassland, July 11 - 17, 1999 (Wang et al.,
1999). The following relationship between the NDVI and
Tll NIR reported in Kaufmann et al. (2000) was used:

NDVIz (1 O )(1(1 ± 0)(i
L WNIR li NIR) + WNIR 1l 1,NIR

UNIR V 1 NIR) + UNIR Tl 1,NIR

where 0 is the ratio between leaf albedos at red and NIR
wavelengths, i.e., 0 = wred/NIR. It follows directly from
Eq. (22) that UNIRTi NIR _ 1 (0 SR) . In the case of
dense canopies, the ASSI, introduced in Zhang et al. (in
press) can be approximated by the SR.

The ASLI was introduced to quantify the anisotropy of
radiation reflected by vegetation. For a linearized signature,
this variable can be evaluated as

/0al (dBRDFrd) 2 (dBRDFNIR \ 2

j0, \ d[t ) K d[t di

(23)1/- f0 ax dBRDFred d
V k 01 rd ~i t

In Eq. (23), [t is the distance introduced in Zhang et al. (in
press). Thus, the ASLI is determined by variation in the shape
of BRDF, which is mainly determined by the wavelength-
independent probability density function F whose shape is
governed by the composition, density, and geometric struc-
ture of vegetation canopies. It will be shown in Section 4 that
F is the bidirectional gap probability function.

3. Signatures of vegetation in the case of a
reflective ground

The three-dimensional radiation field in a scattering and
absorbing medium bounded at the bottom by a reflecting
surface can be expressed in terms of the ground reflectance
properties (which are independent of medium) and solutions
of two independent subproblems: the radiation field calcu-
lated for the case of a completely absorbing surface below
the medium and the radiation field in the same medium
generated by anisotropic wavelength-independent sources
located at the bottom of the medium (Knyazikhin et al.,

(a)
06
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- 0.3

0.2
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0

0 0.1 02 0.3
Red

.8

0.7

o.6

0.5

0.4

o0.3

0(2-

0l

0.4 0.5 06 75 60 -45 -30 -15 0 15 3() 45 60 75
View angle

Fig. 4. (a) Angular signature of grasses derived from AirMISR data. This curve can be approximated by the liner function BRDFNIR 12.9 BRDFrd. The
relative uncertainty tPRDFNIR/BRDFNIR = 0.17, which does not exceed uncertainties in AirMISR surface reflectances was used. (b) Function NIŽR'l NIR was
derived from AirMISR data (solid line) using Eq. (19) and from the solution of the transport equation (dotted line). In model calculation, WNIR and the ratio
0 W Jd/ WNIR were set to 0.92 and 0.22, respectively. Other parameters are the same as in Fig. 3.
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1998; Marshak et al., 2000). This representation of the
radiation field does not violate the law of energy conser-
vation within the medium. For simplicity, we assume that
the canopy ground can be idealized as a Lambertian surface,
although this is not required for our analysis.

In the case of a reflective ground beneath the canopy, the
radiative field I 4rf) in the vegetation canopy satisfies
Eq. (1), boundary condition (Eq. (2)) for downward dir-
ection, and

I,P(rH,Ž) if71 /p(f', D)I.,p(rH,f1')jt'jdD' (24)
27

for upward directions. Here, p is the bidirectional distribu-
tion function of the ground. In the case of Lambertian
surface (i.e., p does not depend on angular variables), the
solution of the boundary value problem (Eqs. (1), (2), and
(24)) can be decomposed to a linear sum of two angle-
dependent functions, namely,

equation LJs -0 and the boundary condition Js(r0 41) - 0 for
downward directions and Js(rH) = r - 1 for upward
directions. Because the operator L does not depend on
wavelength, the function Js is wavelength independent, too.
The solution J, can be represented as the sum of two
components, J -Js+y*y (Fig. 5), where y*, satisfies the
operator equation y*- wTy*'+wTJs. It follows from this
representation that the radiative field J, along upward
directions can be expressed as J, J+ wTJ5 (l w- *,)
where l*, - T14*ly*. By applying the methods outlined in
the previous section, it can be shown that y*, possesses
properties similar to the solution of Eq. (5) in the sense of an
adjoint formulation; that is, y*, along the upper (lower)
canopy boundary in upward (downward) directions behaves
as yt at the canopy bottom (canopy top) in downward
(upward) directions.

It follows from Eq. (25) that the hemispherically inte-
grated surface reflectance r,,p can be expressed as

p' J, (r fl)
pr* (w) 2

(26)rp - r(L) + t(L) 1pr*(w)t*(w)
(25)

Here, I, is the solution of the "black soil" problem (Eqs.
(1)-(3)) discussed previously, t(w) is determined by Eq. (9)
and does not depend on Q, and J>w and the angle-
independent variable r*(w) are radiance and downward flux
at the ground level, respectively, generated by the isotropic
source located at the bottom of the canopy. The function J,
satisfies Eq. (1), zero boundary condition at the top and
Jj(rii,) -r - 1 at the bottom. The operator equation
J, wTJ, +Js for J can be derived by a technique analogous
to that used earlier. Here, Js is the radiance generated by
photons in the isotropic source located at the bottom that have
not undergone any interactions in the canopy. It satisfies the

where r(w) is determined by Eq. (9) and t*(w) is the upward
flux at the upper canopy boundary resulting from the source
located beneath the canopy. Eq. (26) determines the location
of surface reflectance data in the spectral space. Decom-
positions (Eqs. (25) and (26)) hold true for non-Lambertian
surface also. In general case, p is an effective ground
reflectance. J, describes the radiative field in the vegetation
canopy generated by an anisotropic wavelength-independ-
ent source located at the bottom of the canopy, the
specification of which depends on the anisotropy of the
canopy ground (Knyazikhin et al., 1998).

The representation Eq. (25) allows us to define biomes in
terms of three basic variables that determine the radiative
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the sum of two vectors, Js - (Js,Js) and cp (-P* ( Calculations were performed for the homogeneous canopy described in Fig. 1.
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regime in vegetation canopies. They are (1) architecture of
the individual plant or tree and the entire canopy, (2) optical
properties of the vegetation elements, and (3) anisotropy
and optical properties of the ground beneath the canopy.
Indeed, I, and J, depend on leaf albedo and two wave-
length-independent canopy-specific variables, po and Pt,
both being determined by the wavelength-independent
operator T (see Eqs. (7)-(15)). In addition, the anisotropy
of the ground influences the behavior of J, whose contri-
bution can be explicitly separated in terms of the functions J5

and l*, . The effective ground reflectance p in Eq. (25)
describes the optical properties of the ground beneath the
canopy. It follows from Eqs. (26), (15), and (11) that four
wavelength-independent and vegetation structure-specific
variables No, Pt, t(o), and a(a), and wavelength-dependent
leaf albedo and effective ground reflectance uniquely
determine the location of remotely sensed surface reflectance
data in the spectral space.

Eq. (25) includes two extreme situations. The first is the
case of a dense canopy, which transmits a negligible
amount of radiation, i.e., J (ro,f)t(w) ,z0. The angular
signature of the canopy reflectance behaves as described
previously. This is also the case when the surface under-
neath the canopy is sufficiently dark, i.e., pie z 0. Broadleaf
forests are an example of such a situation. The second
situation is characteristic of a sparse canopy, which trans-
mits almost all incident radiation, i.e., t(w)z 1, and scatter-
ing from green leaves is negligible; that is, r*(w) -z 0,
I Zz• pJ . In this case, the angular signature is totally
determined by the optical properties of the ground. Two
angle-dependent components, I, and J , in Eq. (25) deter-
mine the BRDF signature corresponding to intermediate
scenes. The first component varies about a line passing the
origin of the spectral plane. This does not hold true for J,
(Fig. 5). A deviation of biome signature from the line
passing the origin, therefore, indicates the influence of the
ground beneath the canopy on canopy leaving radiation. It
results in a nonzero intercept in the linear regression of
the signature.

We conceive the canopy reflectance in one direction as a
vector on the spectral plane. Let BRDF, BRDFES, and J be
vectors whose coordinates are I,,,, I,, and J , respectively,
at red and NIR wavelengths. These vectors depend on the
view direction. We denote by K a diagonal matrix whose
diagonal elements are values of t(w)p/(l pr*(w)) at red and
NIR wavelengths. This matrix is independent of the view
directions. We use the symbol *L to denote the length of a
vector in the spectral plane. Let BRDFo be the reflectance of
a vegetation canopy with the most probable structural
composition. It follows from Eq. (25) that the distance
between BRDFo and BRDF of another canopy satisfies the
following inequalities

IBRDFo BRDFIIL < IIBRDFgBS

+ IIKOJo KJIIL < TBS + TG,

BRDFBS IL

(27)

where

TBS= IIBRDF BS BRDFBSIIL,

TG = maxtcanopy(wLx) 1
Pcanopy,X >

Pcanopyx>r* 0  (u,) c anopy, 2x )

(28)

Here, the maximum is taken over red and NIR wavelengths
and two canopies. Based on the Minkowski inequality
(Bronstein & Semendyayev, 1985) and representation
J -Js+ y* (Fig. 5), the following estimate of the ASLI
can be derived from Eq. (25)

dj'~P'2 /

ASLI - dl 2  pe) + (d[L'NRR dI

< v/k f td dt
'Smi

+±G Th +1kS
I

dy t
d~t

where ks is the mean ratio JNIR(rofl)/ Jred(roQ.) It means
that the ASLI is determined by variation in the shape of the
BRDF and anisotropy of ground and TG. It follows from
Eq. (28) that the brighter the background, the higher the
value of the ASLI. The inequality Eq. (27) separates a circle
in the spectral space with its center at BRDFo in one
direction and radius R TBS +G. Aggregating these
circles over all available observation directions results in a
set in the spectral space that contains the multiangle data
corresponding to various realizations of biome-specific
canopy structures and soil patterns. Its size is determined
by the radius R and the ASSL of BRDFO. Fig. 4 in Zhang
et al. (in press) shows the biome-specific sets derived from
POLDER multiangle reflectances.

4. Validity of the transport equation for
vegetation media

Our theoretical investigations are based on the assump-
tion that the three-dimensional transport equation can
describe the radiative regime in vegetation canopies. Pan-
ferov et al. (2001) recently made field measurements of
canopy spectral reflectance and transmittance at two sites
representative of equatorial rainforests and temperate con-
iferous forests to test the validity of the three-dimensional
transport equation for describing the radiation regime in
vegetation media. The idea behind the experiments was
simple. The transport equation can be regarded as a linear
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operator that assigns a three-dimensional radiation field
corresponding to the incident radiation (Vladimirov, 1963).
Under some general conditions, this linear operator can be
uniquely specified by its eigenvalues and eigenvectors
(Vladimirov, 1963). Eigenvalues are measurable parameters
(Panferov et al., 2001). It was demonstrated that the theoret-
ically derived eigenvalues (Knyazikhin et al., 1998) are
consistent with those derived from measurements. Thus,
the linear operator of the transport equation represents
radiative transfer in vegetation media. On the other hand, it
has been mentioned by many investigators that the transport
equation in its original form (Ross, 1981) cannot describe
certain aspects of the radiation regime in vegetation canopies
because it does not account for the hot-spot effect, i.e., a very
sharp delta function like maximum about the retrosolar
direction (Knyazikhin et al., 1992; Kuusk, 1985; Li &
Strahler, 1992; Marshak, 1989; Myneni et al., 1991; Nilson,
1991; Verstraete et al., 1990). Fig. 6 illustrates the mech-
anism of the hot-spot effect: photons penetrate into the
canopy through gaps, interact with leaves and exit the
canopy though the same gaps resulting in enhanced bright-
ness along the retroillumination direction. We shall use this
example to demonstrate the ability of the transport equation
to describe the hot-spot effect correctly.

Consider the three-dimensional medium shown in Fig. 6.
We use the boundary value problem for three-dimensional
transport equation to describe radiative transfer in this

4- -

... -1-1,.... ---...... .. ... 1,.... :,.,... -. 1-1
.. ...

...... - -1 "
...

dSh rt

r'X S > I- f
'.. Vf..0f.f%;4-- .. 0 -f .0:' '00:''X 0 -

Fig. 6. Three-dimensional medium with one isolated scattering center at
Point C. This medium is obtained from a homogeneous parallelepiped by
removing a sphere and a line connecting the sphere and the upper
medium boundary and putting a radiatively participating point at the
sphere center C. The removed portion is depicted as a white area. There
are no photon interactions in it. The gray area (which also includes Point
C) is an absorbing and scattering medium. The direction b0 of an incident
beam is chosen in such way that photons can penetrate into the medium
through Point A and experience the first collisions at Point C. It causes
the apparition of a point diffuse source generated by photons scattered by
this point. As a result, the three-dimensional radiation field decomposes
into two fields. The first one is generated by the point diffuse source
located at C. The second field results from photons penetrating into the
canopy thorough elementary surfaces dS on the upper boundary z-0.

medium, which is assumed to be bounded from below and
lateral sides by an absorbing surface,

£1 VI(r, f) + N (r)cI(r, if)

(29)

I(rt, £1) = iod(D -b), nt KbD < 0,

I(rb, D) - 0, nb DKO < . (30)

Here, ai and as are extinction and scattering coefficients that
are assumed to be constants for ease of analysis, X is the
indicator function that takes on values 1 and 0 in the "gray"
and "white" areas, respectively, r, and rb denote points on
the top (subscript "t") and bottom and lateral (subscript
"b") boundaries, n1 and nb are outward normals to the
boundary at r1 and rb, respectively, io is intensity of the
incident beam, and " " denotes scalar product of two unit
vectors. The solution I(rQ) to this problem is the radiance at
r in the direction D that is treated as a Schwartz distribution.
The Schwartz theory distinguishes two types of functions:
regular and singular distributions (Vladimirov, 1971). There
is a one-to-one correspondence between "usual functions"
and regular distributions, and thus, an ordinary function can
be regarded as a special case of a distribution. The Dirac
delta function is the simplest example of a singular
distribution. No usual function can be identified with it
(Vladimirov, 1971). In general, a solution of the transport
equation can be expressed as a sum of regular and singular
distributions. The singular summand must be separated
explicitly because numerical technique cannot deal with
singular distributions. The mathematical theory of Schwartz
distributions applicable to the transport equation was
developed by Germogenova (1986). Choulli and Stefanov
(1996) recently reported that there is a one-to-one corres-
pondence between the complicated three-dimensional struc-
ture of the medium and radiation exiting the medium. They
also pointed out that this property loses its validity in the
case of one- and two-dimensional media. An additional
singular distribution in the solution of the three-dimensional
transport equation makes this one-to-one correspondence
possible. We will closely follow ideas of Germogenova and
Choulli and Stefanov.

Photons entering the medium through Point A in the
direction Do experience the first collision at Point C that
results in the appearance of a point diffuse. It is intuitively
clear that the three-dimensional radiation field decomposes
into two very different fields (Fig. 6). The first is generated
by this point diffuse source at C and the second from
photons penetrating into the medium thorough elementary
surfaces dS on the upper boundary. The incident beam,
therefore, should be treated as a horizontally inhomogen-
eous field with respect to its contribution to the radiation
regime inside the medium. We treat each point on the upper
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boundary as a point monodirectional source and formulate
the radiative transfer problem for each such source. The
radiative response of the medium at r in direction £ to a
point monodirectional source located at ro is the Green's
function, G(rD;ro,Do) (Bell & Glasstone, 1970), which
satisfies Eq. (29) and G(r1 ,D;roQo) -(r, ro)db(D D0 ).
The solution to the problem (Eqs. (29) and (30)) can be
expressed as an integral over the upper boundary of the
Green's function as

I(r, D) - io fG(r, D; ro, Do) Int Do ldro. (31)

A technique to separate the singular components from
Eq. (31) is based on the following result (Choulli &
Stefanov, 1996; Germogenova, 1986): for three-dimen-
sional media, radiances, Go and G1 , of uncollided and
single-scattered photons from a point monodirectional
source are singular distributions while the remaining field
is described by a regular distribution GR. The Green's
function, therefore, is the sum of two singular and one
regular component, i.e., G - Go + G1 + GR. Substituting this
sum into Eq. (31) results in the decomposition of the
solution I(rQ) into three terms, I Io+ I +IR, being inte-
grals over the upper boundary of Go, G1 , and GR, respect-
ively. Because GR is a regular function, the third integral,
IR, is insensitive to a value of GR at a particular point ro,
i.e., one can ignore Point A when integrating GR over the
upper boundary. It means that the contribution of multiply
scattered photons entering the medium through Point A to
the term IR can be neglected (Fig. 6).

The singular nature of Go and G1 makes their integrals
sensitive to particular points of the upper boundary. There-
fore, we perform the integration Eq. (31) over the upper
boundary surface that excludes Point A and separately
over Point A. The former separates photons "continu-
ously" penetrating into the medium through elementary
surfaces dS while the letter specifies the path that results
in the illumination of an isolated scattering center in the
medium (Fig. 6). The integration of Go and G1 over the
surface results in similar expressions for the uncollided
and first-order scattering radiance. Thus, the sum of IR

and these two terms is the solution Is of the boundary
value problem (Eqs. (29) and (30)). Note that Is consists
of a singular (uncollided intensity) and regular (diffuse
intensity) components.

The integration of Go and G1 over the set of points {rA}

results in Ip - Ipo +Ip1, where (Germogenova, 1986)

Ip,o(r, £; rc) r r2 Do)
Jr -rA|2

xr|
rA 7

x(rA- rc Ir rcl.)

Ipi(rD;rc) = Iosexp( a X(r) r rcl)
47vjr -rc 1

x 6(n
r rc
r rcj}

(33)

Here, rA and rc denote the Cartesian coordinates of
Points A and C, respectively, H is the Heaviside function,
and Jr rcl is the distance between r and rc. Thus, a
formal mathematical solution to the problem (Eqs. (29)
and (30)) is

(34)

The first summand, Is, describes the three-dimensional
radiation field generated by photons penetrating into the
medium through elementary surfaces dS (Fig. 6) and is
insensitive to the presence of the isolated scattering center
C and the paths AB. We term Is the classical solution of the
transport equation (Eq. (29)). The second summand, Ip, is
the radiative response of the medium to the point source
that is a singular distribution. With changes in the number
of isolated scattering centers, the classical solution Is is
unchanged but the singular component transforms to the
sum of Ip(rD;rc) over rc. Note that singular solutions
(Eqs. (32) and (33)) express the following well-known law,
namely, the radiance in vacuum decreases between two
points as the second power of the distance between the
points. It follows from Eqs. (32)-(34) and the relationship

Do (rA rc)J rA rcl that the exitant intensity at Point A
(Fig. 6) is I(rAD) Is(rAD)+j(rA)(D +D0), where
j(r) - ios/(47ir rc12). The second summand causes a
delta function like peak in the retroillumination direction
of Eq. (34), i.e., the hot-spot effect.

Let Point C in Fig. 6 completely reflect the incident
radiation while the remaining "gray area" is a completely
absorbing medium. The classical solution Is-0, and the
singular component Ipj take on nonzero values within the
"white area." Let the number of paths AB be changed.
The classical solution is insensitive to this change. The
singular component Ipj is sensitive to only those paths
that pass Point C (e.g., Line CD). Therefore, its specifica-
tion is equivalent to an estimation of the probability that a
scattering center can be simultaneously viewed from two
different points, i.e., the bidirectional gap probability
function. This function appears in most vegetation radi-
ation models (Kuusk, 1985; Li & Strahler, 1992; Nilson,
1991; Verstraete et al., 1990). The bidirectional gap
probability, however, was not related to the solution of
the transport equation previously, and thus, its incorpora-
tion into a particular model on an ad hoc basis led to the
violation of the energy conservation law (Knyazikhin
et al., 1998).
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5. Concluding remark

The insights gained from present land cover classifica-
tion activities suggest integration of multiangle data into
classification attempts for future progress. Land cover types
that exhibit distinct signatures in the space of remote
sensing data facilitate unambiguous identification of cover
types. In this two-part series, we develop a theme for
consistency between cover type definitions, uniqueness of
their signatures, and physics of the remote sensing data.
Radiative transfer best explains the physics of the processes
operative in the generation of the signal in the optical
remote sensing data. Biome definitions given in terms of
variables that the transport theory admits provide the basis
for the consistency principle. The underlying physical
principle is the energy conservation law. The three-dimen-
sional transport equation expresses this law in the most
general form. The realization of the consistency principle,
therefore, means that the law of energy conservation is the
required basis for a theory of land cover identification.
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