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he past decade has produced a remarkable in-
crease in the amount of atmospheric data from
observations and models, but these data are ac-

quired or generated with nonuniform spatial and tem-
poral sampling, scales, and coverage. The challenge for
research into complex phenomena such as aerosol–cli-
mate interaction is to combine these disparate data into
an integrated whole (Kahn and Braverman 1999; Huang
et al. 2002). The ultimate goal is to establish a complete
dataset that will effectively confront and constrain ever
more realistic global three-dimensional models.

A first step in attaining this objective is to produce
a measurement-based description of global tropo-
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T spheric aerosols. Protocols are needed to organize this
vast body of knowledge. For example, in considering
aerosol optical depth (AOD), one of the most funda-
mental parameters of climate and air-quality signifi-
cance, the Science Advisory Group of the Global At-
mosphere Watch program (Baltensperger et al. 2003)
comments “There is a need for a common strategy to
merge the various network observations into a glo-
bal dataset . . . and to develop with satellite agencies
a system for integrating global AOD observations.”

Achieving progress on the aerosol–climate prob-
lem requires applying this strategy to other funda-
mental parameters as well. Producing these integrated
datasets will involve existing and new remote-sens-
ing technologies, the expansion of observing systems
in order to describe aerosol properties in increasing
detail, and the use of new analysis techniques. This
evolving level of sophistication is one element of the
Progressive Aerosol Retrieval and Assimilation Glo-
bal Observing Network (PARAGON) strategy (Diner
et al. 2004a). This progressive approach will make it
possible to tackle problems of increasing difficulty,
such as the incorporation of cloud observations, pro-
cess models, and parameterizations needed for under-
standing indirect effects, and the measurement of
boundary-layer chemistry needed for understanding
aerosol and gas interactions and their effects on air
quality. Assembling the array of data is only one step;
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it is also necessary to establish interoperability, by
which we mean the ability to process and exchange
data from multiple platforms collected at disparate
spatial and temporal scales. Inherent in this concept
is the ability to interpret these disparate data correctly,
and to take into account variability not only in sam-
pling and coverage, but also in accuracy. Synthesis of
the inputs will be required for rigorous evaluation and
research. Algorithm development and validation will
benefit from readily accessible aerosol information,
and the synergistic use of multiple inputs can be ex-
plored. Data mining will be needed to sift through the
data in an efficient, effective way. Geospatial statistics
and data assimilation provide mechanisms for synthe-
sizing the data.

While statistical and assimilation models serve a
critically important role as information interpolators
and integrators, scientific understanding requires the
production of validated process models that incorpo-
rate our complete understanding of the relevant phys-
ics and chemistry. From a societal perspective, the
ultimate goal is a global climate model (GCM) that
contains the essential processes, but in a perhaps sim-
pler and computationally less demanding framework
than the process models. Assimilation acts as a large
flywheel that keeps the model tuned to the observed
atmospheric conditions. Climate models cannot have
such a flywheel, but must maintain an appropriate
climatology by the accurate specification of atmo-
spheric (and oceanic) energetics through model equa-
tions. The very ability of the models to simulate cur-
rent and future climate is intimately tied to these
specifications. Generation of such a GCM is beyond
the current scope of PARAGON; however, to make
optimum use of both the physical insights and the data
record generated, we suggest active coupling to the
climate modeling community through the continued
development and validation of chemical transport
models (CTMs) that either use assimilated meteoro-
logical fields or are driven by meteorological fields
from a GCM.

DATA INTEROPERABILITY AND COMPU-
TATIONAL INFRASTRUCTURE. We can capi-
talize on modern information technology to assemble
a worldwide aerosol data system in order to promote
the widespread exchange and use of data, and to en-
hance computational power for global modeling. The
first step in making data widely accessible to the re-
search community is to create an organizational in-
frastructure. Currently, the capability to assemble
most of the existing aerosol data into a unified,
interoperable whole is lacking. Establishing a distrib-

uted aerosol science information system will rectify
this problem. The NASA Sensor Intercomparison and
Merger for Biological and Interdisciplinary Oceanic
Studies program (R. A. Barnes et al. 2001, personal
communication; Fargion et al. 2003; Werdell et al.
2003) is an example of how such objectives have been
met in ocean biology. NASA’s distributed data ar-
chives, and initiatives within the Earth Science Enter-
prise (McDonald et al. 2002) are addressing ways of
enhancing data access and exchange. The World
Meteorological Organization World Data Center for
Aerosols archives aerosol data from certain surface
networks in a standardized format (Baltensperger et
al. 2003). These elements are necessary parts of
PARAGON; however, we need a broader approach
to promote integrative and collaborative use of the
diverse data.

In addition to making possible the global sharing
of data, modern “grid computing” can help facilitate
collaborative research. Grid architectures support
distributed computing using high-speed networks,
and can provide several advantages for PARAGON,
such as the integration and testing of physics and
chemistry modules developed at different institutions,
fast data exchange, making it unnecessary to down-
load large volumes of data from their archives, and
aggregation of computing resources to create a vir-
tual supercomputer. As a means of improving global
model resolution, aggregation may be an alternative
or complement to subgrid-scale parameterizations.

PARAGON can capitalize on advancing grid, mas-
sively parallel, and other high-performance comput-
ing and cyberinfrastructure initiatives (Foster 2002)
to create an aerosol “virtual observatory” to enhance
climate and environmental research. Precedents in
other disciplines include NASA’s Information Power
Grid (Johnston et al. 1999; Hinke and Novotny 2000)
and the National Science Foundation (NSF)’s Na-
tional Virtual Observatory (NVO). The latter com-
bines more than 100 TB of data from 50 ground- and
space-based telescopes, with standards for services
and data established by the astronomical community
(Freeman 2003). NVO is part of a larger federation,
the World-Wide Telescope (Szalay and Gray 2001),
which is contending with the same technical and col-
laborative issues that we address here. NSF also sup-
ports physics and astronomy research through the
international Virtual Data Grid Laboratory, which
integrates heterogeneous computing, storage, and
networking resources in the United States, Europe,
Asia, and South America, and the Grid Physics Net-
work, a collaboration of information technology re-
searchers and experimental physicists. In high-energy
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and nuclear physics, the Department of Energy (DOE)
(DOE 2001) supports a national collaboration known
as the Particle Physics Data Grid. Research within the
DOE High Performance Networks program (DOE
2002a,b) involves

• software services (“middleware”) that mediate data
access and exchange between archives and
users to facilitate large-scale scientific applications;

• distributed computing, using advanced network-
ing for terabits-per-second throughput;

• artificial intelligence and machine learning for
better computational efficiency power and to guide
large-scale analyses; and

• real-time visualizations of complex scientific simu-
lation results in multiple remote locations.

DOE, NASA, and NSF plan to continue investing
in advanced computing. PARAGON would be poised
to take advantage of these advances, whether for in-
creased computational throughput or for exciting new
opportunities in data access and mining.

DATA INTEGRATION. Integrating observational
and model data will require new methods of handling

diverse spatial and temporal sampling, resolution, and
coverage. These methods will include data- and
model-driven approaches.

Geospatial statistics. Data-driven approaches to gener-
ating a global aerosol picture aim to integrate constraints
from multiple surface and in situ measurements into a
detailed description of regional atmospheric structure.
The regional description can then be extrapolated to
larger spatial and temporal domains based on satellite
and surface network observations. The first steps in the
direction of merging field data from multiple platforms
into coherent “environmental snapshots” are being
taken with data from recent field campaigns (Russell et
al. 1999, 2002; Russell and Heintzenberg 2000; Clarke
et al. 2002; Satheesh et al. 2002; Magi et al. 2004; Reid
et al. 2003; Kahn et al. 2004a). Subsequent steps include
1) using such snapshots to assess satellite observations;
2) using these and other observations to characterize the
three-dimensional spatial and temporal distributions of
aerosol air masses; and 3) combining satellite and in situ
measurements to assess aerosol variations within a spe-
cific air mass (e.g., Clarke et al. 2001; Rasch et al. 2001;
Collins et al. 2001). Ascertaining the quality of indi-
vidual datasets is a vital prerequisite to such efforts.

GEOSPATIAL STATISTICS
The most general statistical model for
the space–time distribution of aerosols is
the function Z(s,t), where s is a
continuously valued three-dimensional
spatial index [e.g., s = (x, y, z) with x
latitude, y longitude, and z height] and t is
time. Here, Z may be a vector with a
first component giving the extinction
coefficient, and the remaining compo-
nents describing particle properties, for
example; Z exists everywhere and at all
times, but we only have access to
observations Yi (xn, yn, zn, tn), the
measurement collected by instrument i
at a subset of locations and times. As in
the case of chemical samplers, Y may be
acquired at a point location and
aggregated over t , or it may be an
instantaneously measured quantity
acquired by a satellite and aggregated
over x, y, and z. The spatial and temporal
grids for instrument i may be different
from that of instrument j, and the
instruments most certainly have different
measurement error characteristics.
Making inferences about Z, or aggre-
gates of Z, requires assumptions about
the statistical relationships among the

Z’s, among the Y’s, and between the Z’s
and Y’s. Inference proceeds via the usual
principles of Bayesian statistics (Berger
1985), which combines all this informa-
tion to make optimal estimates of the
unknown quantities.

Comprehensive texts on spatial
statistics include Cressie (1993) and
Chiles and Delfiner (1999). Cressie
(1993) explicitly addresses geostatistical
data obtained at irregular locations and
lattice data obtained on a grid. Data
from field experiments are of the first
type, whereas satellite data are of the
latter. Various geostatistical approaches
to modeling space–time processes are
also described in Kyriakidis and Journel
(1999). Spatial statistical analysis of
remote sensing data is closely related
to other forms of digital image analysis,
especially that of medical image data
(NRC 1991). A fruitful approach to
finding structure in spatial data is
Bayesian hierarchical modeling (Wikle
et al. 1998). Wikle et al. (2001) used
Bayesian hierarchical models to
combine satellite data at high resolution
with model-generated data at coarse

resolution to estimate tropical ocean
surface winds. Huang et al. (2002)
employed a Bayesian hierarchical model
in the development of a multiresolution
Kalman filter for producing statistically
optimal estimates of ozone from Total
Ozone Mapping Spectrometer data at
multiple nested resolutions.

Various aspects of all these efforts
apply to the data fusion problem posed
by PARAGON, but none provides a
complete solution. For that, we need to
revisit the theoretical statistics underly-
ing inferences required by PARAGON,
and rebuild the model framework
specifically for this context. The
challenge is to formalize statistical
relationships and assumptions by
incorporating physics, chemistry, and
other domain knowledge into the
framework. For example, it is impossible
to make inferences at every (s, t) from
any one data source, and different
measurements may represent averages
over different extents of s and durations
of t. Therefore, the integration approach
will need to make use of spatiotemporal
aggregation on varying scales.
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A variety of approaches can deal with combining
data from multiple sources. Engineers, image analysts,
statisticians, and geoscientists have all attacked the
problem. To realize the synergy among the diverse
aerosol data sources, PARAGON needs a comprehen-
sive, theoretically sound framework for combining
information. There are both theoretical and applied
studies in spatial statistics that are directly relevant.
The sidebar “Geospatial Statistics” on the previous
page provides further details.

Chemical transport and aerosol data assimilation mod-
els. In recent years, the distinction between observa-
tions and model output has become increasingly
blurred by data assimilation. The weather forecast-
ing community pioneered this approach to provide
optimal initial conditions for forecast models. Their
efforts were driven by the recognition that no observ-
ing system could ever hope to measure the proper-
ties of the global atmosphere at the requisite time and
space scales for forecast initialization, and that inter-
polation of scattered measurements simply could not
adequately represent atmospheric structure. Data as-
similation techniques started with routine measure-
ments of state variables from radiosondes and sur-
face sites, but have now grown to include a
bewildering array of measurements of state variables
and radiances. It is widely recognized that assimila-
tion models provide the best possible assessment of
the atmospheric dynamic and thermodynamic state
for comparison with climate model simulations
(Trenberth et al. 2002). Due to the complexity of
cloud properties and parameterizations, and a lack
of measurements having good sampling on the right
space–time scales, assimilation techniques have had
little impact on cloud representations, but this is be-
ginning to change. For example, the NASA Global
Modeling and Assimilation Office is already apply-
ing assimilation techniques to cloud and precipita-
tion observations. This same approach can and is
being used to address the aerosol problem.

Aerosol modeling on the global scale has evolved
in several directions. CTMs typically include the most
advanced representations of the chemistry of the at-
mosphere and the aerosol physical state. These mod-
els are run using prescribed meteorological fields
obtained from weather forecasting models in real
time, meteorological assimilations, or GCMs. CTMs
in this configuration are very useful for studying aero-
sol processes, but cannot be used to study aerosol
impacts on climate because the meteorology is un-
coupled with the chemistry. At the same time, highly
simplified representations of aerosol physics were

developed for GCMs in order to study aerosol–cli-
mate interactions. These models provide useful first-
order estimates of aerosol–climate forcings but gen-
erally lack an adequate description of all of the
competing direct and indirect effects. More recently,
the field has been moving toward merging CTMs with
complex aerosol physics representations with GCMs
(or adding complex descriptions to existing GCMs).
These coupled models can be used to study the effect
of aerosols on the meteorological state, at least for
short (several-year) simulations. Typically, advanced
process representations are first developed in the
CTM framework and then moved to assimilation
models and, in simplified form, to GCMs.

CTMs have two different applications within
PARAGON. CTM output can be directly compared
to observations from both point measurements and
satellites. If it is driven by meteorological fields from
weather forecasting models or a meteorological as-
similation, then CTM output can be compared to
measurements for a particular time period. If they are
driven by the meteorology from a GCM, then statis-
tical comparisons with aggregates over longer time
periods are appropriate. The differences between
CTM predictions and observations often have led to
significant improvements in the CTM representation
of aerosol physics and chemistry and/or in source
emissions specifications. They have also served to
guide observational strategies, helped to pinpoint
observational errors, and can be used to guide inte-
grated strategies that will be of most benefit in decreas-
ing uncertainties related to aerosol effects on climate.

A physically detailed CTM is also the fundamen-
tal tool for aerosol data assimilation. It includes a com-
plete specification of aerosol sources by type and lo-
cation, physical equations to describe modification by
aging and humidity changes, and sink terms due to
both wet and dry deposition. If coupled with a sophis-
ticated radiative-transfer scheme to compute radi-
ances at the top of the atmosphere and at the surface,
the CTM then integrates datasets into a single, best-
estimate aerosol product, just as current data-assimi-
lation models do for meteorological fields.

The weather forecasting experience provides two
important lessons for PARAGON. First, any aerosol
assimilation model will be continually upgraded as
understanding of aerosol physics grows, and it will
have to be continually reconfigured to assimilate new
data sources as they become available. Second, in or-
der to produce assimilated datasets of consistent
quality, the entire aerosol data record will have to be
reprocessed periodically with the latest model ver-
sion. Reprocessing is expensive but absolutely nec-
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essary in order to produce long-term records of
known quality and uniformity.

The distinction between the spatial statistical ap-
proach and assimilation is becoming more and more
blurred. In fact, for some time data-assimilation tech-
niques based on Bayesian statistical models have been
providing a theoretical foundation for combining
physical models and observations. For example,
Lorenc (1986) studied the intimate connections be-
tween a variety of forms of optimal estimation used
for data assimilation in the context of weather fore-
casting. The underlying rationale for calculation of
optimal estimates is the same whether the data are
purely observational, model generated, or a combi-
nation of the two. PARAGON seeks to bring together
and capitalize on recent advances in statistics, aerosol
data assimilation, and transport modeling to produce a
comprehensive representation of atmospheric aerosols.

MULTISENSOR ALGORITHM DEVELOP-
MENT. One motivation for establishing a data
interoperability framework is to stimulate algorithm
development and validation in ways that would not
otherwise be possible, and to facilitate the comple-
mentary use of different data types. Following are two
examples of the potential synergies of combining data
from multiple sensors as part of the retrieval process.

Synergistic use of satellite- and surface-based multiangle
data. Currently, surface-based measurements of di-
rectly and diffusely transmitted radiances are used
primarily to validate satellite data. However, because
retrievals of aerosol properties from such remote-
sensing data (like those from satellites) are
underconstrained, up- and down-looking data could
be combined (where available) to more tightly con-
strain the description of the aerosol column and to
account adequately for the effects of surface reflec-
tance (Dubovik et al. 2003). For example, consider the
synergy between multiangle Aerosol Robotic Net-
work (AERONET) sky radiance measurements and
multiangle satellite data from the Multiangle Imag-
ing SpectroRadiometer (MISR) on Terra.

AERONET sun/sky photometer measurements are
normally made in both the principal and almucantar
planes (i.e., planes containing the sun’s position per-
pendicular to the surface and parallel to the horizon,
respectively). Sky radiance is, thus, sampled over a
range of scattering angles, predominately in the for-
ward-scattering direction. Optical depth can be de-
termined in a straightforward manner from direct
solar measurements. The sky radiance measurements
consist of both a dominant radiance field, which dif-

fusely scatters only within the atmosphere, and a field
that also includes reflections from the surface. The
current technique for retrieving aerosol optical prop-
erties and size distributions (Dubovik and King 2000;
Nakajima et al. 1983) assumes a Lambertian surface
(i.e., its radiance is the same from all viewing angles)
with a predetermined albedo representative of the
surface type at each site (Dubovik et al. 2000). For a
dark surface, these assumptions do not appreciably
affect the outcome of the sky radiance analysis, but for
a bright surface, its actual reflectance properties can
matter greatly.

To constrain ground-based sky photometer re-
trievals more effectively and account for the effects of
surface reflectance, it is highly desirable to include
simultaneous downward-looking multiangle mea-
surements in the analysis (Dubovik et al. 2003). Al-
though this is not currently being done for
AERONET, these additional measurements offer two
important advantages. First, the downward-looking
multiangle measurements allow the retrieval of the
actual surface directional reflectance properties,
which can then be used in the sky photometer aero-
sol retrieval. Second, the downward-looking obser-
vations measure predominantly backscattered radia-
tion, thus extending the radiance scattering angle
range provided by the ground-based observations.
This is important because the determination of aero-
sol particle shape and absorption is very sensitive to
the angular form of the aerosol particle scattering
pattern (the phase function) in some backscatter di-
rections. Furthermore, a more complete characteriza-
tion of the phase function with scattering angle results
in a better determination of the aerosol single-scat-
tering albedo, because it is obtained by integrating the
phase function over angle. The complementarity in
scattering angle coverage between a downward-look-
ing multiangle instrument (e.g., MISR) and an up-
ward-looking multiangle scanner (e.g., a CIMEL
Electronique radiometer) is illustrated in Fig. 1. Aside
from a geometric factor, the phase function is directly
proportional to the single-scattered radiance field.
Because a multiple-scattered radiance field is much
less sensitive to the phase function shape, a robust
retrieval of single-scattering albedo and particle shape
via the phase function variability requires that the
single-scattered radiance represents a significant com-
ponent of the measured radiance field.

Combination of passive and active remote sensing. A
second fruitful area of data synergy is the combina-
tion of passive and active remote sensing (Léon et al.
2003; Kaufman et al. 2003)—for example, when sat-
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ellite spectroradiometry and laser ranging are used to
derive vertically resolved aerosol optical depths and
size fractions. Aerosol optical depth is one of the pa-
rameters required to assess direct radiative forcing,
and great progress has been made in globally map-
ping this quantity from space (though further im-
provement is needed). One potential input that may
help determine anthropogenic aerosol abundance is
the fraction of aerosols that are less than about 1 µm
in radius. This can be retrieved from space via mea-
surements of the wavelength dependence of optical
depth (Tanré et al. 2001; Kaufman et al. 2002) and/or
from multiangle observations (Kahn et al. 1998;
Martonchik et al. 2002), though the accuracy is not
yet well understood. For the Moderate Resolution
Imaging Spectroradiometer (MODIS), validation
studies indicate that the wavelength dependence of
optical depth for fine-mode-dominated aerosol is
underestimated (Remer et al. 2002). Moreover, the
retrieved product exhibits obvious discontinuities
across many coastlines. These discontinuities could be
real (e.g., coarse sea salt over ocean but not over land),
or they could be an artifact of the switch between the
MODIS land and ocean algorithms.

The afternoon MODIS sensor aboard Aqua will
soon benefit from simultaneous lidar data from the
Cloud–Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) satellite, and the latter

will enhance the MODIS products in a number of ways.
First, the lidar can identify cases of subvisible cirrus and
allow tests of whether these cases are ever misinter-
preted as coarse-mode aerosol by MODIS. Second,
lidar retrievals of optical depth, unlike passive tech-
niques, do not depend on surface reflectivity. Although
its optical depth retrievals might be fundamentally less
accurate than from MODIS, the lidar is likely to be
much better at assessing the variability of optical depth
in coastal regions. In addition, lidar can determine aero-
sol-layer elevation, which will be helpful in evaluating
the possibility that sea-salt aerosol can cause land–
ocean discontinuities. Equally important is that the
MODIS measurement of optical depth will enhance the
lidar product from CALIPSO. Aerosol extinction re-
trieval from a simple backscatter lidar is unconstrained
without additional information. A priori knowledge of
the extinction-to-backscatter ratio (e.g., based on clima-
tology) is helpful, but, as shown by Stephens et al. (2001),
the addition of aerosol optical depth information is re-
quired in most cases if the retrieval is to be constrained
to better than about ±40%.

These two brief examples illustrate potential gains
from data synergy. The idea of observational synergy
was one of the core concepts in the development of the
NASA Earth Observing System (Butler et al. 1984). It
is also a key element of the ground-based sites operated
by the DOE (Ackerman and Stokes 2003). Exploiting
this synergy, however, requires dedicated research ef-
forts, which we see as an integral part of PARAGON.

DATA SUMMARIZATION AND MINING.
Because integrated datasets are multidimensional (in-
cluding three-dimensional space and time), multivari-
ate (including aerosol physical, chemical, and radia-
tive parameters), and massive (e.g., satellite-imaging
radiometers generate many gigabytes per day), it is
important to construct summaries in a way that pre-
serves the information in the measurements while
reducing size and complexity for science users. The
NRC (1991) notes “a relatively new role for spatial
statistics . . . is to synthesize and reduce large volumes
of data into manageable pieces of information.”

In light of the diversity, complexity, and large
quantities of aerosol data at many different spatial and
temporal resolutions, efficient interpretation will re-
quire modern statistical and data-mining techniques.
The goal is to understand spatiotemporal, inter-
resolution relationships between, for example, the so-
called extensive properties of aerosols (i.e., quantities
that are functions of the particle concentration); in-
tensive quantities, which are typically thought of as
being concentration independent (e.g., particle opti-

FIG. 1. Complementarity of space-based (blue: MISR
nine cameras) and surface-based (tan: CIMEL principal
plane; green: CIMEL almucantar) scattering angle cov-
erage. Values for the center of the MISR swath are
shown. The Terra spacecraft is in a sun-synchronous
10:30 A.M. equator-crossing orbit, and the scattering
angles correspond to the illumination geometry ob-
tained at the fall or spring equinox. A wider swath or
an orbit closer to local noon could routinely achieve
scattering angles that are even closer to 180°.



1529OCTOBER 2004AMERICAN METEOROLOGICAL SOCIETY |

cal properties) (Ogren 1995); and other quantities of
importance, such as relative humidity. More formally,
we seek to model the joint (multivariate) probability
distribution of the data in defined spatiotemporal re-
gions and then model the relationships between these
distributions as a function of space, time, and resolu-
tion. There are many techniques for doing this (e.g.,
Scott 1992), and the challenge here is to strike a bal-
ance between theoretical elegance and the practical
requirements of working with large datasets.

One approach to the problem of estimating mul-
tivariate distributions from large datasets is to produce
quantized approximations of the original data
(Braverman and Di Girolamo 2002). This enhances
the traditional approach of creating global, gridded
maps of mean quantities for purposes of summariz-
ing or studying global patterns. The multivariate
mean is the best single statistic for describing a joint
distribution; however, how many (and which) statis-
tics are used should be decided on theoretically justi-
fiable considerations. A well-developed framework
for this problem already exists in signal processing
and information theory (Chou et al. 1989; Gersho and
Gray 1991; Shannon 1948) and statistics (MacQueen
1967; Zador 1964; Pollard 1982). We suggest using it
as the basis for estimating distributions of aerosol
properties and other related quantities.

We also envision using physical models to provide
training data for supervised learning algorithms,
which can extrapolate local results to larger scales.
Regression is the simplest form of supervised learn-
ing, but many more sophisticated methods exist, in-
cluding neural networks, support vector machines,
and classification and regression trees (Hastie et al.
2001 provide a comprehensive review). Supervised
learning techniques have been used successfully in the
study of aerosol distributions (Stroud et al. 2000;
Konovalov 2003) and the effect of tropospheric aero-
sols on global temperature (Walter et al. 1998). Garay
et. al (2003) report the successful application of ac-
tive learning based on support vector machine clas-
sifiers for cloud detection. It is logical to apply a simi-
lar methodology for the categorization of aerosol air
masses. There is reason to believe that this may be a
useful approach because seasonal and spatial distri-
butions of aerosol amount and type exhibit patterns
that repeat from year to year. Also, the microphysi-
cal properties of broad classes of mineral dust, sea salt,
biomass burning, pollution, and background particles
seem to vary little for many of the largest sources (e.g.,
Clarke and Kapustin 2002). Further testing of this
hypothesis is a research topic for the data-mining
component of PARAGON.

SYSTEMATIC APPROACHES TO MODEL
EVALUATION. Determining the role of aerosols
in past and future climate change ultimately requires
the use of fully coupled climate and chemistry mod-
els, and evaluation of these models is required in or-
der to trust their results. Verifying GCMs entails
searching for climate change “fingerprints” and estab-
lishing relationships between GCM output and the
data acquired over relatively short time frames
(Goody et al. 1998). We confine our discussion to the
need for critical examination of CTMs (for which the
longest relevant time scale is on the order of months)
and radiative models that relate particle physical and
chemical attributes to optical properties and incom-
ing and outgoing radiation.

Currently, discrepancies between models and
measurements are among the main difficulties con-
fronting the aerosol research community. For ex-
ample, in models the average forcing over the oceans
by aerosols is about 2 W m−2 smaller than that implied
by measurements (Penner et al. 2002). Resolving such
discrepancies requires establishing a data–model
comparison strategy that can isolate the underlying
cause(s). Methodical model and data evaluations (e.g.,
Balkanski et al. 1993; Benkovitz and Schwartz 1997;
Rasch et al. 2000; Kinne 2003; Schulz and Kinne 2003)
have progressed significantly. These evaluations are
necessary to identify specific inconsistencies in either
the observational data or the models.

Deficiencies might arise from the absence of key
observables, measurement or retrieval errors, and/or
misrepresentations of particular physical processes.
Even “observations” require some degree of inference.
For example, many assumptions about particle prop-
erties underlie the retrieval of optical depth from a
remote sensor. Here we address how data integration,
interpretation, summarization, and mining ap-
proaches discussed earlier can provide important
tools for rigorously testing model assumptions.

Seinfeld et al. (2004) discuss the collection of pro-
cesses involved in the life cycle of aerosol layers. Un-
like clouds, where droplets or crystals grow and
evaporate within hours or a day, aerosols can reside
in the atmosphere from days to weeks. This suggests
a strategy in which air masses are sorted by source
type so that the aerosol processing along trajectories
can be cataloged and compared. Such a catalog may
be regarded as a statistical ensemble within which the
evolution of observed and modeled particle proper-
ties can be evaluated. Spatiotemporal data mining
(e.g., Vucetic and Obradovic 2000a,b), both super-
vised and unsupervised, could provide a means of rig-
orously partitioning massive observational and
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model-generated datasets into comparable subsets.
The set of synoptic conditions need not be contigu-
ous; for example, a single ensemble for the study of
model performance for biomass burning might en-
compass areas of Indonesia, Africa, and South
America during different months of different years.

We then need to consider which attributes of rel-
evant variables need to be compared. Given that many
variables of interest do not conform to Gaussian distri-
butions (e.g., size distributions are multimodal and
height distributions are multilayered), simple means
and low-order moments such as variances are likely to
be inadequate. Moreover, visual inspection of monthly
means, for example, may be a necessary but wholly in-
sufficient method of assessing the agreement between
observations and models. Rigorous tests of models re-
quire capturing joint relationships between different
variables, and the inclusion of covariances is adequate
only when these relationships are linear. Writing on
behalf of the Program for Climate Model Diagnostics
and Intercomparisons, Gates (1992) observes that

in most cases validation extends only to the average
values of variables that are of particular interest. . . .
A somewhat more systematic approach to model
validation is needed if we are to identify and pro-
gressively reduce model errors. [A] comprehensive
validation program of atmospheric models would
include . . . the mean, variability, and complete fre-
quency distribution (and corresponding error esti-
mates) for the full suite of simulated variables and
the associated fluxes, processes, and phenomena. . . .
[R]eliable identification of model errors may require
innovative techniques for time series analysis and
pattern recognition.

Our earlier discussion on the summarization of ob-
servational data can also be applied to the outputs of
models. Observed and modeled data distributions
should be compared using formal hypothesis tests that
establish whether or not both datasets derive from the
same overall population. The fundamental presump-
tion is that if the model produces results “close” to
what is observed, then the model is “right.” Of course,
the challenge lies in defining the meaning of close.
Statistical hypothesis testing provides a useful way of
formalizing ideas about whether two datasets are close
or a “match.” We echo the words of Goody et al.
(2002), written in the context of climate monitoring
but appropriate for this discussion:

[S]ome differences will be due to inadequacies in the
model physics and dynamics. It is these latter dif-

ferences that must be evaluated and refined by com-
paring model and observed statistics. Although this
is a difficult task, we have no alternative but to un-
dertake it . . . [S]uitable observational systems and
assimilation techniques . . . to support tests of model
predictions . . . would undoubtedly emerge if this line
of investigation were supported by federal agencies,
which is not the case at the present time.

Much of the model evaluation research to date has
focused on limited datasets in time and space and on
simple statistical tests, such as comparisons between
models and observations of regional and monthly
mean aerosol optical depths. While such comparisons
are important, achieving climate-forcing accuracies
on the order of a few watts per square meter requires
integrated datasets, providing a much more compre-
hensive set of aerosol properties and sophisticated
statistical tests that effectively describe model accu-
racy in a multidimensional statistical space.
PARAGON seeks to provide the framework that sup-
ports and organizes research toward these ends.

CONCLUSIONS. Achieving the PARAGON vi-
sion requires establishing multidisciplinary, inter-
agency, and international partnerships to advance
fundamental scientific understanding of aerosol pat-
terns and processes. Some portion of this vision will
be fulfilled by the creation of shared observational
systems and networks (Kahn et al. 2004b; Diner et al.
2004b). Another portion, however, must be fulfilled
by combining many disparate observational and mod-
eling components into an integrated whole. This sec-
ond objective involves a complex interweaving of
aerosol observations and geospatial statistics, assimi-
lation and chemical transport modeling, information
technology, and data-mining research. The resulting
four-dimensional picture will provide the means to
test and validate models of aerosol–climate interac-
tions. Reaching this goal will not be easy; it entails
planning and coordination that spans funding agen-
cies and research institutions, program managers, and
scientists. Without such a coordinated effort, how-
ever, the pace of progress will be slow as individual
researchers struggle with disparate datasets, idiosyn-
cratic models, and limited resources.

In considering the totality of this approach, we are
led to several important conclusions. First, the full
sweep of these integration activities is absolutely criti-
cal if we are to establish the quantitative role of aero-
sols in the earth system and achieve an understand-
ing of how complex aerosol processes impact climate
change and air quality. Second, none of these activi-
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ties is beyond our reach—the scientific community has
the requisite knowledge and experience to undertake
them. Third, each of these activities has a research com-
ponent. While we can see the broad outline of the path
that needs to be taken, there are many issues that need
to be resolved along the way. Finally, we can only reach
our goal of understanding aerosol–climate interactions
by a sustained research effort. We created the PARA-
GON vision as a blueprint for such a program.
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