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Abstract ― Accurate and reliable information about land cover 
and land use is essential to carbon cycle and climate change 
modeling. While historical regional-to-global scale land cover 
and land use data products had been produced by AVHRR and 
MSS/TM, this task has been advanced by sensors such as 
MODIS and ETM since the latter 1990s. While the accuracies 
and reliabilities of these data products have been improved, 
there have been reports from the modeling community that 
additional work is needed to reduce errors so that the 
uncertainties associated with the global carbon cycle and 
climate change modeling can be addressed. Remotely sensed 
data collected in different wavelength regions, at different 
viewing geometries, usually provide complementary 
information. Their combination has the potential to enhance 
remote sensing capabilities in discriminating important land 
cover components. In this paper, we studied multi-angle data 
fusion, and optical - SAR data fusion for land cover 
classification at regional spatial scale in the temperate forests of 
the eastern United States. Data from EOS-MISR, Landsat-
ETM+ and RadarSat-SAR were used. The results showed 
significantly improved land cover classification accuracy when 
using the data fusion approach. These results may benefit 
future land cover products for global change research.   
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I. INTRODUCTION 
 
According to the most recent IPCC report, about 20-25% of 
the current increase in atmospheric CO2 of 3.2 gigatones 
(GT) per year is contributed by changes in land cover and 
land use [1]. The uncertainty related to this estimation 
remains as large as ± 30%, with the greatest uncertainty 
associated with error in rates of land-use change [2].  
There is a consensus in the global change research 
community that satellite remote sensing is the best feasible 

way to reduce uncertainties at regional-to-global scales [1] 
[3]-[7]. Commonly used remote sensing data for land cover 
and land use mapping include AVHRR, MSS/TM, JERS-1, 
etc. The low spectral resolution provided by these 
instruments, however, reduces the likelihood of achieving 
high local classification accuracy [1].  
Different materials have different spectral characteristics in 
different wavelength regions at different viewing geometries. 
Therefore, data from various sensors collected in different 
manners may provide complementary spectral information. 
Fusing the information from different sensors collected in 
different manners has the potential to enhance remote 
sensing capabilities of discriminating among materials.    
This paper reports on progress made in multi-angle data 
fusion, as well as optical data and SAR data fusion, for land 
cover and land use classification in the temperate forest of 
the eastern United States. Two cases were studied: coarse 
and moderate spatial resolution. For the coarse resolution (1-
km), classifications made using both nadir and multiple view 
angle data, were compared using MISR data. For the 
medium spatial resolution (30m) case, classifications made 
by different combinations of visible, near infrared (NIR), 
shortwave infrared (SWIR) and synthetic aperture radar 
(SAR) were compared using ETM+ data and RadarSat data.      
 
 

II. ACCURACY CRITERIA 
 
Although it is difficult to quantitatively specify the accuracy 
criteria for carbon cycle and climate change modeling based 
on land cover and land use classifications, there is much 
evidence in the literature that errors in the input land cover 
and land use parameters - particularly the rates of land use 
change - need to be decreased if emissions of carbon are to 
be determined with high precision [1]. For example, errors 
associated with the rates of land use change estimated from 
remote sensing data vary greatly. In the tropical Amazon 
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region, the highest estimate of tropical deforestation (8.0 × 
106 ha/yr) is 5 times higher than the lowest estimate (1.5 × 
106 ha/yr) [8] [9]. The classification accuracy of land cover 
types affects the accuracy of parameters derived from them, 
such as area extent, change rate, and the other area related 
parameters. We equate the accuracy (percent correct) of land 
cover and land use classification as a baseline for assessment 
of accuracy improvements in the comparisons that follow.     
 
 

III. STUDY SITE AND DATA 
 
We chose two areas in the eastern United States, one located 
in Virginia and the other in Maryland, as our research sites. 
The Middle Atlantic region hosts various temperate forest 
ecosystems, including deciduous and evergreen forest, and 
other land cover and land use types such as croplands, 
grasslands, shrub-lands, wetlands, etc.     
We collected MISR data from NASA-Langley DAAC 
through the EOS-Gateway. The MISR data are the Level 1B 
terrain-corrected radiances containing all the nine viewing 
angles. We also collected Landsat ETM+ data and RadarSat 
C-band HH polarization data.  
During the summer of 2003, a field trip was conducted in 
Virginia and Maryland to collect field validation information 
for this research. Sites were georeferenced with a portable 
GPS receiver. Over 100 sampling points with various land 
cover and land use type information have been collected.    
 
 

IV. DATA PREPROCESSING 
 
One of the important aspects in remote sensing data fusion is 
to make sure that all the data sets to be fused have the same 
geographic reference accuracy and are calibrated to the same 
reference atmospheric conditions.   
The preprocessing of MISR level 1B data included co-
registration of different view images, and calculation of 
TOA BRF (Top of Atmosphere Bidirectional Reflectance) 
for each individual view and each band and mosaic of image 
blocks. The preprocessing of Landsat ETM+ and Radarsat 
C-band SAR data included the range-to-ground 
transformation, adaptive filtering to remove the speckles, re-
sampling of SAR image to uniform its spatial resolution, co-
registration of SAR data with ETM+ data, etc.  
For the ETM+ and SAR data fusion, since our study area is 
relatively small and terrain in the region is relatively flat, we 
assume the same atmospheric and terrain effects across each 
individual scene.    
 
 

V. MISR - NADIR VERSUS MULTI-ANGULAR 
CLASSIFICATION 

 
MISR has nine view angles imaging the Earth 
simultaneously at angles 26.1°, 45.6°, 60.0° and 70.5°, both 
forward and afterward of the local vertical, in addition to the 

nadir view. Each view angle includes four spectral bands – 
Blue (0.446µm), Green (0.558µm), Red (0.672µm) and Near 
Infrared (0.867µm) [10][11].    
When comparing the differences between nadir-based and 
multi-angle-based classification, we applied the same 
classification procedure - K-means unsupervised 
classification constrained by a maximum of eight clusters. 
For the nadir view classification, the spectral feature space is 
four dimensional, thus the spectral feature for each pixel can 
be expressed as 
 
                     S = (B, G, R, NIR)                          (1)                
 
For the multiple angle view classification, we added four 
view angles including two forwards and two aft of view 
angle 26.1° and view angle 45.6°, thus the spectral feature 
space is twenty dimensional and the spectral feature for each 
pixel can be expressed as  
 
                     S = (S1, S2, S3, S4, S5)                      (2)         
 
where Si indicates the four-dimensional spectral feature 
space at each angle from BF to BA views. We did not use 
the other two forwards and two aft views, since their 
viewing angles are so large that the number of pixels 
blocked by angular view is too high. The original MISR 
images are shown in Fig. 1 and image spectral curves from 
each of them are shown in Fig. 2.   
 
 

          
 
       (a) BF view image                        (b) AF view image    
 
 

           
 
        (c) AN view image                    (d) AA view image    
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       (e) BA view image 
 
Fig. 1  Illustration of the original MISR images at the five 
view angles, show as false-color composites of the NIR, Red 
and Green bands.   
 

            
 
             (a) BF view                                (b) AF view              
 

           
 
              (c) AN view                             (d) AA view               
 

   
 
            (e) BA view 
 
Fig. 2 Illustration of image spectral curves at the five view 
angles, showing the TOA-BRF.    

 
 
We focused on only the major land cover types, particularly 
vegetated classes. We took Deciduous Forest as an example 
in the classification to examine the improvement in 
classification accuracy, since we have more field validation 
than for other land cover and land use types.   
The classification results are shown in Fig. 3 and Fig. 4. 
 
 
 

                     
 

                                           (a) 
 

                  
 

                                          (b) 
 
Fig. 3   Classification based on MISR nadir view versus 
five angle views. The dark green color on all the images 
indicates Deciduous Forest. (a) Classification based on 
nadir view only using K-means unsupervised 
classification and classes were labeled by referencing 
the ground truth information and TM-based 
classification when necessary.         
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                                      (a)  
 

          
 
                                   (b)       
 
Fig. 4 Expanded view of the images in Fig. 3 showing the 
field validation points (black pluses) for Deciduous Forest.  
(a) Classification based on nadir view only; (b) 
Classification based on five angular views.    
 
Based on comparison between the two classifications and 
referencing the field information collected in the 
Shenandoah National Park (n=23) located in Virginia, we 
note the following:  
 
1) The classification based on five views was much more 

improved in accuracy than the classification based on 
nadir view only. For the latter, incorrectly classified 
pixels accounted for 22% of the total, while for the 
classification based on five views, incorrectly classified 
pixels were just 9%.  

 
2) In addition, based on observation and referencing with 

Shenandoah Park maps, the deciduous forest 

classification based on multi-angle observation was 
much improved over the nadir-only classification.     

 
 

VI. ETM+ AND SAR - VISIBLE, NIR, SWIR, 
AND C-BAND HH SAR DATA FUSION 

 
This research site is located at the Patuxent River watershed 
in Maryland. We used the Visible, NIR and SWIR bands of 
the eight ETM+ spectral bands: three visible (0.45-0.515µm; 
0.525-0.605µm; 0.63-0.690µm), one near infrared (NIR, 
0.75-0.90µm), two shortwave infrared bands (SWIR, 1.55-
1.75µm and 2.09-2.35µm), one thermal infrared (TIR, 10.40-
12.5µm) and one Pan-band (0.52-0.90µm). SAR data were 
from the Canadian RadarSat sensor, a C-band HH 
polarization SAR with 5.6cm wavelength. The data were 
collected in standard mode at 25m resolution. After our 
preprocessing, the image was re-sampled to 30m resolution 
to be consistent with the ETM+ data. 
 
We set three different band combination cases for ETM+ 
and SAR data, and used a Stacked Vector data fusion method 
[12]. After the images were preprocessed and combined, the 
same unsupervised statistical classification method (K-
means) was applied and constrained to eight clusters. We 
again used Deciduous Forest as an example to test the 
impact on classification accuracy.    
The spectral feature space for each case can be expressed as  
 
      Case 1:        S = (Visible, NIR)                          (3)                
      Case 2:        S = (Visible, NIR, SWIR)              (4)                
      Case 3:        S = (Visible, NIR, SWIR, SAR)    (5)                
 
We have 16 sampling points for Deciduous Forest in this 
area (n=16). The classification images for each case are 
shown in Fig. 5. The classification results are presented in 
Table 1 and shown in Fig. 6.  
 

TABLE 1 
CLASSIFICATION ACCURACIES OF THE DECIDUOUS 
FOREST CLASS USING DIFFERENT DATA 
COMBINATIONS AND FUSION APPROACHES     
  

Fusion case 
Correct 
classification 
(%) 

Case 1: Visible and NIR       42%    

Case 2: Visible, NIR and SWIR        69% 

Case 3: Visible, NIR, SWIR and SAR       81% 
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                                 (a) 
 

                      
 
                                   (b)   
 

            
 
                                  (c) 
 
Fig. 5 Classification based on different combinations of 
ETM+ and SAR data. The dark green color on all the images 
indicates Deciduous Forest. (a) Case 1; (b) Case 2; (c) Case 
3, each as defined in Table 1.   

       
 
 
Fig. 6 Illustration of the improved accuracy in land cover 
and land use classification by incorporating the SWIR and 
SAR data. Case 2 incorporated the two SWIR bands and 
case 3 incorporated the SAR information.      
 

 
VII. DISCUSSIONS AND CONCLUSIONS 

 
Generally, the accuracy of land cover classification depends 
on two factors. One is the amount of the spectral information 
provided by the input remotely sensed data, the other is the 
classification approach. For the same set of input remote 
sensing data, different classification approaches may have 
quite different accuracies. This is important because land 
cover and land use data products play an important role in 
quantitative modeling of carbon cycle and climate change. 
Input map accuracy is closely related to output uncertainties 
from these models.  
 
There is evidence that multi-angle observational data are 
sensitive to vegetation canopy structure or the canopy 
roughness [13] [14], thus the use of multi-angle data has the 
potential to increase the accuracy in land cover and land use 
classification for use in models. Our analysis has 
demonstrated that accuracy of land cover and land use 
classifications were substantially improved by fusing multi-
angle spectral measurements.   
 
While the information provided by individual remote 
sensing instrument is not enough to discriminate materials or 
their parameters with high precision, measurements from 
different instruments usually have complimentary 
characteristics [15]. The best way to utilize this information 
is to combine data from different instruments through data 
fusion. The three case studies we present using combinations 
of ETM+ and SAR have demonstrated that the accuracy of 
land cover and land use classification can be greatly 
improved by introducing the shortwave infrared data and 
fusing optical with microwave measurements. We found the 
highest accuracies can be achieved using a combination of 
Visible, NIR, SWIR and SAR data.       
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