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ABSTRACT
Kernel-driven bidirectional reflectance (BRDF) models have recently been widely used for mapping albedo with
multiangle remote sensing data such as ASAS or temporal AVHRR sequences. An Ambrals algorithm will be used
to produce global BRDF and albedo products in the coming EOS era using multiangle reflectance data from the
MODIS and MISIt. Its operational version currently uses a combination of Ross-Thick and Li-Sparse-Reciprocal
kernels which has been validated favourably over other kernels or combinations.

To further improve the ability of extrapolation of the Ambrals kernel combination with better physical sense
while keeping its data-fitting ability, a new kernel, Li-Transit, is derived and suggested to replace Li-Sparse-Reciprocal
kernel in next version of Ambrals. We tested the new kernel combination against the current one and a few alternatives
using 29 field collected BRDF data sets. The results show similar data fitting ability and more reliable extrapolation
for albedo mapping. A test is also done by using the new combination and the current one to produce temporal
albedo change maps of New England of U.S.A. using AVHRR images.

Presented also is our recent study on scaling effect of Helmholtz principle of reciprocity, and discussion on
application of a priori knowledge in kernel-driven BRDF model inversion.
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1. INTRODUCTION
Albedo is particularly important in the land surface energy balance. Thus accurate representation of surface albedo
is necessary for many applications. Albedo can be defined as the ratio of reflected solar shortwave flux from the
earth to that incident upon it. Detailed definitions can vary depending upon context, such as spectral albedo,
wideband albedo, black-sky albedo (or directional-hemispherical reflectance) and white-sky albedo (synonymous
with the bihemispherical reflectance). If incident solar radiation is purely directional, as would happen if there were
no scattering atmosphere, it's called black-sky albedo. Alternatively, incident radiation may be isotropic, which case
may be called the white-sky albedo. The two cases are unrealistic extremes, but its linear combination weighted by
proportions of skylight and direct sunbeam is easier for users to describe temporal change of realistic albedo than
using BRDF itself.

Early investigators usually assumed a Lambertian terrestrial surface, a necessity due to the sensors at that time
all nadir-viewing only. Most natural surfaces, however, have anisotropic reflectance and the Lambertian assumption
can result in errors of up to 45% in the calculation of albedo (Kimes, 1985). Thus in order to accurately retrieve
albedo from remotely sensed measurements the directional nature of the reflected radiation needs to be taken into
account. The directional reflectance of a surface can be expressed as a function of illumination (i) and viewing
(v) geometry, known as the bidirectional reflectance distribution function (BRDF). The black-sky albedo is derived
by integrating the BRDF over the observational hemisphere. The white-sky albedo can be obtained by further
integrating the black-sky albedo over the illumination hemispheres (Strahler et al., 1994). Unfortunately, the BRDF
cannot be directly measured in field as an infinitesimal solid angle and an infinitesimal surface area can hardly be
realized. Instead directional radiometers with a finite field of view (FOV) measure bidirectional reflectance factors
(BRFs) over the footprint of its FOV. The BRF's limit is related to the BRDF by a scaling factor. Early work in field
was performed by Kriebel (1978), Kimes et al. (1986), who measured the BRFs of a variety of bare and vegetated
surfaces, Ranson et al. (1985), who studied soybean canopies and Irons (1992) who studied soil surfaces. All of
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these studies used ground-based directional radiometers. Deering et al.(1986) developed the PARABOLA directional
radiometer which is currently the principal instrument for the ground-based measurement of BRFs. More recent
measurements are obtained by airborne ASAS (Irons, 1992), POLDER simulator (Leroy and Breon, 1994), CAR
(Tray, 1998), and few satellite sensors such as temporal sequence of AVHRR (Eidenshink and Faundeed, 1994).

Only with robust physical models, the parameters estimated from a few observations over limited ranges of
illumination and viewing directions can be applied to the other parts of bihemispheres. However, these physical
models usually are nonlinear, and have many parameters (usually more than 7) ,and thus are difficult to invert for
parameter estimation, especially from sparsely sampled observations.

Following the approach pioneered by Roujean (1992), Wanner et al. (1995) described a reformulation of these
physical models through approximations in order to obtain semi-empirical linear combinations of kernels. The model
framework, known as AMBRALS, allows a user to fit a three parameter kernel-driven BRDF to the measured BRF.
The values of the three unknowns are determined by the least square fitting. Whether the model can then be used in
a forward mode to determine albedos then depends on whether the approximations used for kernel derivation are still
valid beyond the range of illumination and viewing geometry at which the observations are sampled. This is a vital
point for albedo estimation from kernel-driven BRDF model, since hemispherical and bihemispherical integration
may need extrapolations far away from illumination and viewing geometries where the observations were acquired.
Moreover, extrapolation is further needed for wideband albedo. Therefore, the ability of extrapolation is the key to
claim a kernel-driven model semi-emperical instead of empirical.

2. KERNEL-DRIVEN BRDF MODELS
Linear kernel-driven BRDF models were designed to ease the difficulties in inversion of non-linear physical models,
at expense of brutal approximation of original physics. A linear kernel-driven BRDF model has the following form:

BRDF = +fi *k0i(ti,tv,) +fgeo *kgeo(ti,tv,) (1)

where k are "kernels" , known functions of illumination and viewing geometry (ti: the zenith angle of solar
direction, tv: the zenith angle of viewing direction, : azimuth differnce of sun and sensor) ; f are three unknown
coefficients to be adjusted to fit observations. With more than 3 uncorrelated multiangluar observations, a regression
method can get the estimations of the three parameters much more easily than least square error fitting of a nonlinear
models.

Original design of AMBRALS includes a collection of different kernels for various landcover types. However, the
user community prefers a unique combination of kernels. After extensive effort of validation (Hu, et al., 1997), it's
determined that the comination of RossThick (k01) and LiSparse (k90) kernels has the best ability fitting BRDF
measurements (Privette et al., 1997). RossThick is a volume scattering kernel to describing the BRDF from a
homogeneous leaf canopy with very large LAI and spherical LAD; while LiSparse is a geometric kernel to describe
strong shadow casting effect of sparsely located crowns, or other opaque clumps. Generally speaking, the RossThick
kernel characterizes a hotspot with a "bowl shape" at large zenith angles; while LiSparse kernel charaterizes a
dune-shape hotspot especially in forward scattering directions.

However, data fitting ability isn't the only important thing for a semiemperical model, more important is its
ability of extrapolation. LiSparse kernel was designed for sparsely located clumps and associated shadows, whenever
the area proportion of this clump plus shadow is approach the unit, the LiDense kernel should replace LiSparse, since
the approximation made for LiSparse is exp(-x) = 1-x, where x is the areal proportion mentioned above, roughly
proportional to sec(tv). It's very clear, whenever x is greater than one, the approximation will be no longer valid in
any physical sense. For this reason alone, LiSparse kernel has very poor ability for extrapolation at larger viewing
zenith angles, where negative reflectance may appear even the kernel fits the sampled observation very well.

A remedy has been proposed based on the principle of reciprocity, called LiSparseRModis (LiSparseR for short)
kernel (Lucht, 1998). Eventhough we have proved that the Helmholtz principle of reciprocity suffers scale effect over
heterogeneous landsurface, and thus does not generally apply at the scale of remote sensing pixel (Li, et al., 1999),
the remedy improved the kernel's extrapolation ability. The reason can be explained as follows.

We may express the LiSparse kernel as:
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ksparse = A(ti, tv, 0) — B(ti,tv, ) (2)

where A(ti, tv, ) = P(ti, tv, çb) * sec(tv) and B(ti, tv, ) = sec(ti) + sec(tv) — O(ti, tv, ), where P and 0 are
reciprocal functions regarding ti and tv (details refer to Wanner et al., 1995). Therefore to make the kernel reciprocal,
a sec(ti) term is added:

ksparseR = P(ti, tv, 0) * sec(tv) * sec(ti) — B(ti, tv, çb) (3)

As we illustrated above, the poor extrapolation ability of LiSparse comes from the fact that B(ti, tv, çb) become
very large at large zenith angles, an additional sec(ti) in the positive term makes this less likely happen. At the
mean time, since solar zenith angle (ti) changes very little for the most of data sets we used to test fitting ability of
kernels, this additional term change the kernel's fitting ability very little. For this reason, LiSparseR will be used for
operational codes of MODIS BRDF product.

However, at the scale of remote sensing pixels, the physics of reciprocity is weak, Li et al. (1999) pointed out
that if there is unsymmetric crosstalking in remote sensing pixel, the principle will break down at that scale. Greffet
and Nieto-Vesperinas (1998) also investigated the scale effect of the principle, and found it is still valid as a good
approximation at the scale of wavelength, even in case that "lateral shift" (equivalent to cross-talking as we called)
exists. In addition, LiSparseR may still make reflectance negative, though less likely than LiSparse does.

In order to solve this problem, we return to the original designs, i.e., whenever the approximation exp(-x) = 1-x
is no longer valid, we should switch to LiDense kernel:

kdense = 2 * ksparse/B(ti,tv, q5) (4)

which is stable for full range of sec(tv) or sec(ti) . However, there are two problems in actual implementation: 1)
after the linearization of the original model, the variable x no longer exists, so we don't know when we should switch
from LiSparse to LiDense; 2) in validation, the fitting ability of LiDense is not as good as LiSparse, we don't want
such switching to degrade the fitting ability too much.

With these considerations in mind, we designed a new kernel called LiTransit:

ktransit = ksparse ; if B(ti, tv, cb) > 2, ktransit = 2/B(ti, tv, çb)

The transition is natural, i.e., at B=2, ksparse kdense, thus it's easy to implement. Though, this transition may
not be accurately where the switching should happen. So it needs to be tested using available data sets to know
whether this natural seamless transition works.

3. TEST OF THE DATA FITTING ABILITY OF LITRANSIT
Total 29 field measured BRDF data sets were used for testing. Among the 29, 27 sets were used for tests before, and
the additional two are also from Deering's Boreas forest measurements (Hu, et al. 1997). RossThick was used as the
bowlshape kernel all through the test.

Tests were first done by the LiTransit kernel against LiSparse and LiDense. The results on the square fitting
error are:

LiTransit LiSparse LiDense

Least 8 19 2

Mid 21 3 5

Greatest 0 7 22

It is somehow not easy to judge whether LiTransit or LiSparse has the best fit. Among 21 datasets which the
LiTransit yields second best fitting, there are 3 categories of cases:

(1) almost the same good fitting as LiSparse (12 data sets). For example, the corn data set show:
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rii LiTransit LiSparse
LSE 0.048742 0.048615 0.054245

Thus LiSparse is slightly (0.000127 absolute and 0.3% relative) better in fitting, but the albedo resulted from
LiSparse is: 0.021415 (red), 0.105266 (NIR); and the LiTransit gives: 0.0924 (red), 0.2073 (NIR), while the reflectance
ranges of the corn dataset are from 0.0497 to 0.2634 for red and from 0.1299 to 0.4981 for NIR. Thus the conclusion
is clear, the new kernel is close to what the observations would support, while the old LiSparse suffers a wild
extrapolation at large zenith angles.

(2) the LiSparse is clearly fitting the data better than the LiTransit, basically including soil, field, and low cover
vegetations (7 in total). For example, the dataset Soil.1 shows:

I LiTransit LiSparse LiDense

LSE [ 0.035740 0.027309 0.042190

But LiSparse gives out an white-sky albedo: 0.147459 (red) 0.207355 (NIR) , which are smaller than all four
corresponding black-sky albedo of the same kernel:

VZN [ Nadir 30 45 60 (degrees)
Red 0.163225 0.162315 0.161883 0.160044

NIR 0.223696 0.223254 0.223746 0.223453

While the Lirhansit kernel gives out similar black-sky albedo:

VZN Nadir 30 45 60 (degrees)
Red 0.182863 0.172480 0.164256 0.163362

NIR 0.246793 0.235252 0.226725 0.227965

but a more likely white-sky albedo: 0.171636 (red) 0.236552 (NIR).

All 7 datasets in this categories show the similar patterns.

(3) The LiTransit and LiDense have the similar fitting ability while LiSparse is the worst (for mostly dense
vegetation).

Therefore, it's concluded that the LiTransit behalves as being designed, i.e., it has the similar fitting ability for
moderately vegetation coverage as the LiSparse, slightly better for dense vegetation, but slightly worse for mostly
baren sites, but it's constrained reasonablly well, thus won't get wild extrapolation.

Eventhough B=2 transition boundary is seamless and natural, we tried to change this bigger or smaller, the
results show that whenever by new boundary Li&ansit gets a few best fittings from LiSparse, it loses almost equal
number to LiDense. So we decide to keep B=2 boundary as the natural transition.

Then we tested LiTransit against LiSparseR and LiTransitR, which is artifitially made by adding another sec(ti)
similarly as LiSparseR.

We looked at 1) fitting error difference; 2) black-sky albedo's change with SZN; 3) white-sky albedo.
In 29 data sets, 21(LiTransit) and 22(LiTransitR) behave similarly to LiSparseR, in all regards of the above three

criteria. The different behaviors mainly occur for sparsely vegetated datasets: field, grass (very low NDVI), soil.1 to
3, corn (very low NDVI), steppe. All these data show downward black-sky albedo with increasing SZN. How can we
judge a data set would show a downward black-sky albedo? Let's again use the corn dataset (red band only) as an
example:
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f0 fi fgeo SZN: 0 30 45 60

0.020 0.088 0.129 0.107 0.074 0.011
-0.082 0.167 0.172 0.141 0.104 0.055
-0.188 [ 0.200 0.227 0.164 0.116 0.055

LiSparse 0.243

LiTransit 0.309

LiDense 0.417

The observations has an SZN ranges from 38.2 to 45.1 degrees and the fitting SSE's are 0.0486, 0.0487, and 0.0542
respectively in order.

By looking at these results, we hardly know which set of black-sky albedo we can trust. However, knowing that
LiSparse is a sharp downwarding kernel, RossThick is a bowishape kernel, and LiTransit and LiDense are milder
downward kernels than LiSparse, we can conclude the original data must have a rather sharp downward tendency
in SZN range 30-45 degrees, and only LiSparse kernel can model this tendency well, at the expense that going wild
near and beyond 60 degrees, while LiDense and LiTransit kernels can hardly fit the downward trend in data and
have to turn fvol to negative.

So the downward trend of black-sky albedo (BSA) with SZN should be a real feature in data at the range SZN
from 38 to 45 degrees.

Now, we turn to reciprocal version of kernels:

I fiso J f0i fgeo SZN: 0 30 45 60

I
LiTransitR 0.263 -0.187 0.168 0.129 0.116 0.102 0.082

P LiSparseR 0.226 -0.074 0.100 0.099 0.092 0.081 0.0J
The fitting is slightly worse than LiTransit, better than LiDense.

The results are understandable, since R-version of kernels has an additional sec(ti) , so it makes both LiTransitR
and LiSparseR have less sharper downward trend, more negative fvol hS to be employed to fit the data, and even
though, the drop of black-sky albedo seemingly can not be well retrieved.

Worse than that, when the SZN range in the data is larger, the downward tendency of black-sky albedo with
SZN in the most of the sparse sites can not be retrieved. For example, the site "field" (red only) has:

fiso f0i fgeo SZN: 0 30 45 60

LiSparse 0.269 0.261 0.063 0.183 0.180 0.178 0.171

LiTransit 0.333 0.078 0.148 0.201 0.189 0.168 0.148

LiDense 0.331 -0.001 0.114 0.221 0.190 0.171 0.153

The SZN ranges from 26 to 45 degrees, and the fitting SSE's are 0.0158, 0.0312, and 0.0416 respectively in order.

This presents a slightly downward trend of black-sky albedo in SZN range 26 to 45 degrees. However, because of
the additional sec(SZN) term, the trends are almost reversed for R-kernels:

I

r— fiso hot fgeo SZN: 0 30 45 60

0.170 0.178 0.190 0.215
0.186 0.183 0.185 0.194

LiSparseR 0.256 0.186 0.064

L LiansitR 0.312 0.061 0.154

The fitting SSE's are between LiSparse and LiTransit respectively in order.

More interesting is the pattern of conifers. Judged from NDVI, they should not be called "sparse" , but their
black-sky albedo may be slightly downward or slightly upward, hard to judge. For example, the obs.new data set
has:
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r fy01 fgeo SZ
0.024 0.027

N: 0 30 45 60

LiTransit 0.059 .0357 .0325 .0295 .0274

LiSparse 0.040 0.041 0.009 .0283 .0283 .0284 .0284

The fitting SSE's are .0183 and .0188, the difference is rather small. And the white-sky albedos are .0262 and
.0304 respectively. Now interesting question is: which white-sky albedo and which black-sky albedo trend we should
trust more.

When we turn to R-version of kernels, as we can expected, both turn the black-sky albedo upward:

fiso fvoi fgeo SZN: 0 30 45 60

LiTransitR 0.040 0.011 0.019 .0245 .0247 .0258 .0287

LiSparseR 0.032 0.022 0.007 .0232 .0241 .0256 .0287

The fitting SSE's are .0178 and .0183, and white-sky albedos are .0276, 0.0272 respectively.

Fortunately, the dataset obs.new has almost hemispherican viewing sampling of BRDF at various SZN, so the
black-sky albedo can be approximately estimated by average (weighted by sin(tv)*cos(tv)). Thus we may compare
with modeled ones:

SZN Measured LiSparse LiTransit LiSparseR
35 0.0272 0.0283 0.0315 0.0245

40 0.0277 0.0283 0.0305 0.0250
45 0.0266 0.0284 0.0295 0.0256

50 0.0272 0.0284 0.0287 0.0264

55 0.0269 0.0285 0.0279 0.0274
60 0.0262 0.0284 0.0274 0.0287
65 0.0252 0.0280 0.0271 0.0303
70 0.0261 0.0269 0.0272 0.0325
74 0.0280 0.0247 0.0277 0.0346

The coefficients of correlation with measured BSA are -.3376 for LiSparse, 0.5201 for LiTransit, and -.1487 for
LiSparseR. Thus we can see, only RossThick-LiTransit fits the feature, that slightly drops till SZN about 65, and then
turn up at larger SZN. Note that because Parabola measurements don't have VZN beyond 75 degrees, so comaprison
of absolute values is not very meaningful.

4. OTHER TESTS ON CAPABILITY OF LITRANSIT
As being designed, fgeo is to have some physical sense to describe how the surface is clumped into shadow-casting
stuffs. So we compared classification ability of fgeo (both red and NIR) from LiTransit and LiSparseR.

Both kernels show some sense of structure information, major differences occur for only three cases:

1) LiTransit makes Irrigated.wheat (NDVI 0.78) very structurally alike to FIFE.July.11 (NDVI 0.81), while
LiSparseRModis makes Irrigated wheat very structurally alike to Kimes.corn (NDVI 0.58).

2) LiTransit makes Aspen, Pine, and Hardwood well separated, but LiSparseRModis makes all three very alike.

3) LiTransit makes Orchard.grass (NDVI 0.61) alike sparsest ones such as Sorg (NDVI 0.61) and Vege (NDVI
0.58), while LiSparseR makes it more alike to denser ones like Old.Jack.Pine (NDVI 0.64) and Irrigated.wheat (0.78).

According to Strugnell ang Lucht (SL, 1999), Orchard grass is described as sparse grass-like vegetation, by
intuitation, irrigated wheat may have more structural similarity with FIFE grassland in July than corn. And
Aspen, Pine, and Hardwood may have certain structural difference. However, because we don't have more accurate
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information on these different structures and there are some spectral/radiometric differences in instruments, this
comparison is inconclusive, we can only say LiTransit looks better than LiSparseR in showing structural difference.

NOAA AVHRR sequence has been used for testing the AMBRALS algorithm (SL, 1999). Test using a poor
quality New England AVHRR data (228-243) is done for RossThick-LiTransit against RossThick-LiSparseR, on the
frequency of 2 unpleasant cases: inverted white-sky albedo (WSA) negative or greater than one):

(NOL >= 7) WSA<O WSA>1 WSA<O WSA>1

jj
0

LiTransit

4parseR
RED

RED

1107

1178

0

0

NIR
NIR

1

1

The above results were obtained from direct inversion for all pixels with number of looks (NOL) greater than 7.
Eventhough better algorithm can make the inversion less sensitive to noise, the information of poorly sampled and/or
noisy observations may still not be enough for three unknowns. In the next section, we illustrate the accumulation
of a priori knowledge for more reliable inversion.

5. A PRIORI KNOWLEDGE BASE FOR BRDF OF LAND SURFACE
The earth surface is a very complicated system, and quantitative remote sensing has to rely on the accumunation
of knowledge of this surface. Therefore, the 29 datasets will serve as our initial knowledge base, from which we can
have some ideas what landsurface's BRDF should look alike. However, BRDF as a function of four variables (ti,tv,q5,
and wavelength) is not easy to display or comprehend or make use as a priori knowledge.

According to Li et al., (1998), a priori knowledge can be represented in different forms: 1) (wide) hard bounded
range of parameter values, usually applicable for physical limits, such as albedo must be positive and smaller than one;
2) some parameters or their relations are accurately known or we know they are insensitive to the given observation
geometry, then they can be fixed — we may call such knowidge 6-bound; 3) unknown parameters have a priori known
joint probability density function (JPDF), we call it a soft-bound range. All three kinds of a priori knowledge can be
made of use in inversion depending upon the situations. Here what we need is to accumulate soft-bound knowledge of
three f , since it's semiemperical nature, we don't have physical limits for them, and a wide hard bound's advantage
in inversion is limited. On the other hand, without softbound knowledge, it's unlikely we can have any 6-bound
knowledge.

On the other hand, a priori knowledge may be at different levels. We need to know the the JPDF of 3 coefficients
for landsurface globally, we also like to know the conditional JPDF for given raw data; or for given landcover type.

The importance of accumulation for such knowledge has been realized for years. It's probably the time to initiate
a knowledge base for AMBRALS.

5.1. Initial Knowledge Base
Using AMBRALS inversion capability, we obtained the statistics of three coefficients of the 29 data sets as follows.
One problem is, as mentioned previously, is the difference in instruments. Since we don't have good ground to
calibrate them, the knowledge is very raw — but still better than nothing. The following statistics of the three
coefficients are for LiTransit:

r Red fjo fcz fgeo NIR fiso fvoi fgJ
mean 0.142037 0.043939 0.049334 0.400393 0.189117 0.082912

La 0.126338 0.044809 0.051687 0.108432 0.158399 0.0801J
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5.2. Expansion of the Knowledge Base
Strugnell and Lucht collected 68 data sets, among which data sets from Kimes, Ranson, Irons, and some from Deering
are the same as those in Hu's collections. First thing we'd like to do before combining two collections together, is to
see whether our initial knowledge base can be apply to the SL collection for identifying problem in data compatibility.

We used AMBRALS to invert all new datasets and only 6 data sets have results 'strange' to the a priori knowledge
we gained from the above statistics, we have to look into the data and look for reasons.

(1) 1988/chuck.site: It has only one directional observation. Later Strugnell suggests there must be some errors
in data transfer, the lose is not recoverable, so we give up this set.

(2) SCAR/forest: It has very fine VZN angular resolution (1 degree in both viewing zenith from 0 to 90, and
azimuth from 1 to 360), but only one SZN (56.67). There is a very strong forward scattering from 70 to 90 degrees.
The current model combination does not use the specular kernel, so is not able to model this feature. We cut the
data beyond 70 degrees of viewing zenith angles.

(3) 1988/dune-flat: Like the chuck.site, there are errors in data transfer, and we don't know how to retrieve the
original. We give up this set.

(4) 1987/ifcl-site2: There was error in band information processing. We found corrected the error and then
everything is fine.

(5) 1988/snow-on-lake.ice: This is something new to the initial knowledge base, the strange results should be
added into knowledge base.

(6) 1989/silt.playa: New, the strange results should be added into knowledge base.

Then, combined with the 29 data sets, we have a expanded knowledge base from total 73 data sets, the global
knowledge now include:

Red
r

fvol fgeo NIR fvoi fgeo

mean 0.15329 0.04148 0.04271 0.39346 0.16249 0.07926

a 0.14431 0.04297 0.05423 0.12589 0.11993 0.08693

The covariance between the three parameters are:

Red f50,f0 fiso,fgeo fvol,fgeo NIR fiso,fvoi fiso,fgeo fvoi,fgeo

0.00012 -0.00029 0.00403 -.00556 0.00493 -0.00713

Comparing with the statistics of 29 data sets, the means change very little, while varainces are increased, because
the new extremes are now in the knowledge base. So finer grouping is more necessary and feasible. But we would
like to illustrate how this raw global knowledge base would be used in inversion first for examples.

6. MAKING USE OF KNOWLEDGE BASE
The principle of applying Bayes inference theory in quantitative remote sensing inversion was illustrated in Li et al.,
1998, for example.

6.1. Using a priori knowledge to find and smooth noisy samples
Temporarily we define a failed inversion as its resulted albedo, either BSA or WSA is greater than one or negative.
With stable kernel LiTransit, it's now easy to identify the reasons of the failed inversion: poor sampling including
insufficient number of looks, and noisy sample(s) . For example, one of the above mentioned NIR inversion failure
has the following original data (NOL = 8):
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VZN VAZ SZN SAZ Red NIR

i_i 61.300 124.600 28.800 0.000 0.030 0.165

1 27.600 42.000 35.200 0.000 0.055 0.287

—i- 12.400 42.500 34.300 0.000 0.036 0.298

3 20.200 130.600 32.900 0.000 0.039 0.216

4 33.700 129.200 32.500 0.000 0.037 0.210

—.-- 53.000 126.500 32.000 0.000 0.020 0.195

—- 17.000 43.400 37.800 0.000 0.083 0.190

1.300 78.300 37.100 0.000 0.072 0.181

Ambrals inversion result for NIR are: f= 0.617029, fc= 0.760900, and fgeo 0.395941. This yields a WSA =
-0.004808.

Based on the a priori knowledge in parameter space, it's easy to map the parameter JPDF into data space
assuming every PDF is normal and JPDF multivariate normal. Thus we can obtain a priori PDF of observation in
each viewing direction. The comparison of true observations and corresponding PDF is as follows:

—
NIR.ref Est.ref Est.var Dist

—o- 0.165 0.290 0.247 0.251ii 0.287 0.347 0.168 0.146

—- 0.298 0.331 0.176 0.078

0.216 0.285 0.236 0.141

4 0.210 0.278 0.248 0.136

—- 0.195 0.282 0.252 0.172

—i 0.190 0.326 0.190 0.313

7 0.181 0.300—J________0.221 0.253

where Dist = (Est.ref - NIR.ref) I sqrt(Est.var) Then we decide to remove the observations with the largest Dis till
the WSA > 0, the looks 6, 7, 0 are removed, inversion using the remiaining 5 looks gave the results: 0.535270,
fvol= -0.339929, and fgeo 0.292046. This yields a WSA = 0.118472.

Another failed inversion the section 2.3 has the similar patterns with NOL = 7. The inversion is failed because
of a negative BSA at SZN=60 degrees. After removing the two least likely looks, the inversion results are: f=
0.539713, fi= -0.353146, and fgeo 0.282723. This yields a WSA = 0.131668, and a downward BSA from SZN
=0, 30 45, to 60 degrees: 0.313777, 0.248728, 0.167710, 0.051598.

The above two inversion after removing the least likely looks are no longer failures, but the result is still problem-
atic, since the NOL is only 5 in both examples and the results both look strange. We define a problematic inversion
by the likelihood of invertion results which does not break the hard bound but looks very strange —small a priori
likelihood of occurence based on our knowledge. For example in the above two inversions with 5 looks, inverted
coefficients still look strange — unusally negative , and large fgeo ,comparing to a priori knowledge.

By looking at the scattering plots of inverted parameters for 73 datasets and failed inversions in 3-D parameter
space. It's clear that all failed inversions result in coefficients away from and surrounding the known 73 good results.
Then we define an inversion is problematic if one or more coefficients fall into the region between the most-likely
regions of the a priori JPDF and the least-likely region where failed invertion are distributed.

Again, problematic inversion may be caused by noisy data or poor sampling. We'll continue to deal with noisy
data and then the poor sampling.

Knowing some looks may be noisy, instead of dropping them from inversion, we decide to smooth them. Smoothing
noisy data as well as dropping outliers are both widely acceptable in practice. However, in hemispheric directions
coupled with BRDF, it's very hard to determine how to take average of which directions. We tried to smooth noisy
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looks by forward simulations, i.e., take average of Niliref and Est.ref in previous tables for noisy looks. Thus the
three smoothed looks for example 1 will be: 0.227, 0.258, and 0.240 for the look 0, 6, and 7 respectively.

Adding to unchanged looks, the inversion results are now: f= 0.424, f0= -.00536, and fgeo 0.172. This
yields a WSA = 0.215 and BSA: 0.282, 0.254, 0.222, and 0.184. Similarly after smoothing the two noisy looks for the
Example 2, the Ambrals inversion posterior estimates are: f1= 0.437, f,j= -.0511, and fgeo 0.173. This yields
a WSA = 0.218 and BSA: 0.295, 0.264, 0.228, and 0.183.

Now both invertion results look reasonable, but 3 and 2 simulated data are added into original 8 and 7 respec-
tively. Therefore, we must add remarks into quality flag for "smoothed" ,"3/8 or 2/7 a priori information added for
smoothing" . Later in the text we will call this ratio "a priori information ratio".

6.2. Using poorly sampled data to get posterior estimates of unknowns
When sampling is poor, i.e., too few NOL, or directions are poorly located, the inversion matrix may be singular or
has a large condition number, or a large noise propogation factor (Gao et. al, 1999), the inversion is underdetermined
and there exists no least square solution.

In such case, application of a priori knowledge is a must. Bayes inference theory is the best way to make use of
a priori knowledge, but conventional Bayes inversion requires integral in parameter space. Or in case we don't need
posterior distrbution in parameter space but a simple maximum likelihood estimate, we can get it by minimizing the
cost function:

Cost(X) = (A * X — Yobs)'C'(A * X —
Y0b3) + (X _ Xo)'C1(X_ X0) (5)

where Y08 is the vector of BRDF observations, A is the kernel matrix, X is parameter vector f, X0 is the a
priori best-guess of the vector X; Cd is noise covariance matrix of data noise and model inaccuracy, and C is the
covariance matrix of a priori knowledge of X. The total Cost(X) consist of two parts: Cost of data misfitting and
cost of parameter deviation from a priori best guess.

For the purpose of illustration, let's assume now we have only single look, then the cost of data misfitting is zero,
if and only if

fiso + fvoi * k01(ti, tv, ct) + fgeo * kgeo(ti, tv, 0) — Yobs 0 (6)

The solution of course is a plane in the 3-parameter space. Everywhere on this plane, the misfitting cost is exact
zero, thus we can never find a unique solution for three unknowns on this plane without a priori knowledge. Now
assume C has a much larger variance (i.e., large uncertainty of a priori knowledg) than noise in the single look,
what Bayes inversion does in this extreme case is to get the posterior JPDF over the solution plane of eq (6). And
minimizing the eq (5) is actually seeking the peak of this JPDF over the solution plane.

For timely global MODIS BRDF products, integral in 3-D space is not practically possible, and even minimizing
eq (5) will cost too much computing time. Therefore, we suggest to map a priori JPDF in 3-D parameter space into
data space, to localize the operations, similar to the smoothing we did in the last subsection.

To inject a priori information into poorly sampled data, we simulate more directional BRDF data as:

Ysimu Asimu * X0 (7)

Pooling these simulation data and real observations together, it can be guaranteed that it will be an overdeter-
mined inversion and thus linear regression can be used to get a least square solution. The problem is how much new
information from observation and how much a priori guess is contained in such a solution. We may explicitly write
the cost function actually in the linear regression approach as:

Cost(X) = [A *X —
Y0b31'[A * X —

Yobs] + (X — Xø)'[A'simuAsimu] * (X — X0) (8)

where A is the kernel matrix for real observations in (5). Now the total cost function consists of two parts, the first
is the cost of data misfitting, and the second is again that of parameter deviation. Note that, if Asimu is so selected
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that AimuAsimu equals to C1;-1 , then eq (8) will be equivalent to the eq (5). Since covariance matrix C of a priori
PDF of three unknowns is positive-determined, we can write it in form:

C=E*A*E' (9)

where A is diagonal matrix of eigenvalues and E is corresponding matrix of column eigen vectors. Then, we can
simulate three data points by:

Asimu A112 * E' (10)

Note Asimu need only to be calculated once and stored together with X0 and C.

Ysimu A'*E *Xo (11)

Note this simulation does not employ the forward model, but directly generates three data points which make their
corresponding cost function numerically equivalent to the cost function of parameter deviation. So actually, they are
abstract of a large number of random simulation based on a priori JPDF in parameter space.

Now adding the single-look observation together, the conventional LS approach will minimize eq. (8) and get a
maximum-likelihood estimate (MLE) of X, which is somewhere between X0 and the solution plane of (6). For the
purpose of illustration, let's imagine that C, is spherical and very large variance, the above MLE is the perpendicular
projection of Xo onto the solution plane of (6) . Such an MLE is better than no solution and is closer to the true
value of the unknown than Xo.

But the cost of misfitting should be weighted by C' . In case that we don't have knowledge on Cd, we may try
to add an artificial weight to real observation:

Cost(X) = n * [A * X — Y03]'[A * x — Y0] + (X — X0)'[AgjAsjmu] * (X _ X0) (12)

where the weight n can be easily introduced into the standard linear regression. This weight actually depends on
how much we trust on the new observation and how much we trust on the a priori knowledge. The larger the n, the
closer the solution X will be drawn to the solution plane of (6), farther from Xo; but it will be less stable —since the
solution planes of (6) depends on the geometry of the single look. Similar to the case for smoothing, we will call the
ratio 3/n as "a priori information ratio".

In order to initially determine what a weight n should be used, we subset a single look measurement from one
well-sampled set of the 73 sets and apply our algorithm. Their 'true values' of parameters and WSA's are obtained
from full dataset. Then we can compare their one-look inversion results with their 'true values' for different a priori
information ratio. Then we subset another single look and repeat. Finally, we repeat the above procedure for another
well-sampled data set and go on. The same global prior knowledges are used in all cases. The results show that, for
single look inversion problem, a priori information ratio 3/4 can get a rather stable posterior estimates.

Note this approach to use a priori information is by essence the same as being suggested by Jackson (1979), but
has been adapted for the use together with Ambrals. Using the algorithm, we run the New England AVHRR albedo
map. Compared with the map using the same AVHRR data but standard Ambrals, the improvement is obvious.

7. CONCLUSION AND DISCUSSION
Next to do is to accumulate more a priori knowledge and have a finer grouping of data sets for finer a priori knowledge,
based on raw spectral observations or landuse classifications.

The advantage of this algorithm using simulated data is its simplicity for injecting a priori knowledge into Ambral
regression. However, the general approach of Bayes linear regression should be applicable to all underdetermined
linear inversion problems.
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