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[1] In this paper, we investigated the feasibility of retrieving cloud parameters of
inhomogeneous and fractional clouds from simulated multispectral and multiscale
radiometric data by using mapping neural networks. A radiometric database prepared for
neural network training consists of area-averaged radiance data for two pixel scales, i.e.,
(1 km � 1 km) and (0.25 km � 0.25 km) pixels, respectively. The cloud parameter
retrieval assumes a vertically uniform inhomogeneous and fractional cloud defined with
6 parameters, i.e., the mean and standard deviation of optical thickness, the mean and
standard deviation of effective radius, the fractional cloud cover, and the cloud top
temperature, all defined at a scale of cloud parameter retrieval. The retrieval procedure
comprises two separate steps: the first one is relative to the angular interpolation and
correction of radiance data (surface reflection and thermal emission contribution). The
second step concerns the cloud parameter retrieval as such from interpolated and corrected
radiance data. The input vector to the retrieval MNNs consists of 8 radiometric data in
addition to a number of necessary ancillary data such as surface temperature and ground
albedo. The 8 radiometric data are 5 area-averaged radiances over (1 km � 1 km)
pixel and 3 standard deviations of radiance over (1 km � 1 km) pixel estimated from
(0.25 km � 0.25 km) pixel radiances. After evaluating the performance of the neural
networks trained for each step, we tested the whole retrieval procedure for three types of
inhomogeneous and fractional clouds: flat-top bounded cascade clouds and flat-top and
non-flat-top Gaussian process clouds. All the cloud parameters of these clouds can be
retrieved with reasonable accuracy in spite of the fact that the mean and standard deviation
of optical thickness of non-flat-top clouds exhibit some dispersion. The inclusion of
(0.25 km � 0.25 km) pixel radiance data as input vector components improved
significantly the performance of the cloud parameter retrieval. Finally, we analyzed the
consequences of some simplifying assumptions on the retrieved cloud parameters, and
discussed the perspectives of the cloud parameter retrieval based on the neural
networks. INDEX TERMS: 0320 Atmospheric Composition and Structure: Cloud physics and chemistry;

3260 Mathematical Geophysics: Inverse theory; 3360 Meteorology and Atmospheric Dynamics: Remote

sensing; 3359 Meteorology and Atmospheric Dynamics: Radiative processes; KEYWORDS: cloud retrieval,
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1. Introduction

[2] In recent years, various methods have been proposed
to retrieve cloud parameters from multispectral radiance
data under the plane-parallel homogeneous cloud assump-
tion [Nakajima and King, 1990; Nakajima et al., 1991;

Nakajima and Nakajima, 1995; Platnick and Valero, 1995].
As far as informative radiance data are limited to two
wavelengths (one in visible and the other in near infrared),
one can consider only an inverse cloud model with two
cloud parameters. However, there is some degree of free-
dom in the choice of cloud parameters to retrieve; Brenguier
et al. [2000] retrieved the cloud depth and droplet number
concentration under adiabatic droplet growth assumption
instead of the usual optical thickness and effective radius.
[3] When inhomogeneous clouds are treated as homo-

geneous clouds, the variability of microphysical parame-
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ters at scales smaller than averaging scale leads to biases in
radiance and radiative flux, which is called ‘plane-parallel
bias’ [Cahalan et al., 1994b; Loeb et al., 1997; Oreopoulos
and Davies, 1998; Szczap et al., 2000a]. The plane-parallel
bias also varies significantly with the scale of averaging
[Davis et al., 1997; Oreopoulos et al., 2000a]. Hence,
when the optical thickness and effective radius of inhomo-
geneous clouds are retrieved under the plane-parallel
homogeneous cloud assumption, the retrieved values only
represent their corresponding ‘effective’ values, which are
a function of the sub-pixel cloud heterogeneity and differ
significantly from their means over observation pixel
[Szczap et al., 2000a].
[4] There have been some attempts to retrieve cloud

parameters, in particular optical thickness, of inhomoge-
neous clouds [Chambers et al., 1997; Marshak et al., 1998;
Oreopoulos et al., 2000b; Cahalan et al., 2001] and to
evaluate the effect of small scale variability on the retrieved
cloud parameters [Davis et al., 1997; Iwabuchi and
Hayasaka, 2002; Varnai and Marshak, 2001, 2002].
Recently, Faure et al. [2001a, 2002, referred to hereinafter
as FIG01 and FIG02, respectively] showed the feasibility
of retrieving cloud parameters (mean optical thickness,
effective radius, fractional cloud cover and sub-pixel scale
cloud inhomogeneity) of horizontally inhomogeneous
clouds, by using mapping neural network (abbreviated
hereafter as MNN). They also showed that an MNN
retrieval algorithm could integrate easily radiances of
neighbor pixels as additional input data and retrieve the
cloud parameters even if the size of observation pixel is too
small to neglect the horizontal photon transport to and from
neighbor pixels (FIG01, FIG02). This enables us to bypass
an implicit assumption that neighbor pixels do not influence
the radiance from an observation pixel, i.e., the pixel is large
enough so that one might neglect effects of horizontal
photon transport between a target pixel and its neighbors.
[5] Compared to Advanced Very High Resolution Radi-

ometer (AVHRR), new space-borne radiometers such as
MODIS (Moderate Resolution Imaging Spectroradiometer)
on TERRA or GLI (Global Imager) on ADEOS 2 have
more spectral channels in near infrared and measure radi-
ance averaged over a pixel of smaller size; GLI/ADEOS 2
has also multiscale measurement capability. Their data
are also accompanied by other collocated radiometric
data: multidirectional radiance data (MISR/TERRA and
POLDER/ADEOS 2) or microwave radiance data
(AMSR/ADEOS 2). This raises a question how one can
use these better observation capabilities to improve retrieval
algorithms, i.e., to retrieve more pertinent cloud parameters
that are compatible with available radiometric data, by
taking into account of more realistic cloud characteristics.
[6] The first objective of the present study is to extend the

work started in FIG01 to more realistic conditions of the
cloud parameter retrieval and to confirm that the MNN
retrieval of cloud parameters is effectively feasible by using
radiance data. In doing so, we have to solve some technical
problems that have been left unexplored in FIG01. The first
problem is relative to the interpolation of radiance data from
an arbitrary solar incidence-viewing configuration to the
nearest MNN solar incidence-viewing configuration (abbre-
viated hereafter MNN I-V configuration) for which a cloud
parameter retrieval MNN is trained. The second problem is

relative to decoupling radiance due to the cloud layer
reflection from other undesirable components such as those
reflected by underlying earth surface or emitted by both
cloud layer and underlying earth surface.
[7] The second objective is to investigate the impact of

multiscale radiometric data to the cloud parameter retrieval.
In fact, the usual cloud parameter retrieval uses only area-
averaged multispectral radiance data. In the present study,
we investigate the impact of multispectral radiance data
measured at a smaller pixel (0.25 km � 0.25 km) to the
cloud parameter retrieval at a larger pixel (1 km � 1 km). A
sensitivity study such as the one presented in this paper
would be useful to analyze what kinds of cloud parameters
are best to be retrieved from available radiometric data and/
or what kinds of radiance data are more pertinent for
planned cloud parameter retrieval.
[8] The outline of the present paper is as follows. In

section 2, we discuss general principles of the cloud
parameter retrieval and explain the reason why our retrieval
procedure is based on the application of MNNs. In section 3,
we describe briefly characteristics of radiance database we
have prepared for the present study. In section 4, we present
the generalization performance of MNNs we trained for
each step of the retrieval procedure. We will discuss also the
difference between cloud parameters retrieved for two types
of inverse cloud models, the one with the inhomogeneous
clouds and the other with the plan-parallel homogeneous
clouds. In section 5, we will assess the overall performance
of the retrieval procedure by applying it to flat-top bounded
cascade clouds and flat-top and non-flat-top Gaussian
process clouds. Finally, we will discuss perspectives of
the cloud retrieval procedure based on the application of
MNNs in section 6.

2. Retrieval Algorithm

2.1. Principles of Cloud Parameter Retrieval

[9] Neural networks are increasingly applied to data
inversion because they are well adapted to find non-linear
statistical relationships between target variables and input
variables [Faure et al., 2001a; Krasnopolsky and Schiller,
2003]. They can be used as ‘‘black box model’’ providing
only effective target-input mapping between observed target
and input variables [Harris et al., 1998]. However, one
should be very cautious about such ‘black box’ application
of the MNN for the cloud parameter retrieval. A critical
issue is whether such a statistical model can provide
sufficient insight into underlying physical processes that
generated the training data; examples of such utilization of
MNNs were given by Faure et al. [2001b, 2001c].
[10] The rationale why the present retrieval algorithm

uses an MNN approach is that an MNN or other statistical
approach is inherently required to deal with the retrieval of
cloud parameters of inhomogeneous and fractional clouds.
Once an inverse cloud model and its characteristic param-
eters are defined for the cloud parameter retrieval, one of the
following two cases occurs. In the first case, the inverse
cloud model can be used as ‘direct cloud model’ with
prescribed cloud parameters for radiance field simulation,
as with the plan-parallel homogeneous cloud model. In this
case, one can solve the inverse problem by using classical
methods of parameter optimization or more practically by
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using look-up tables. In the second case, one cannot use the
inverse cloud model as ‘direct cloud model’ for radiance
field simulation by some reasons. This situation actually
happens for inhomogeneous clouds, because we have no
adequate method to generate an inhomogeneous cloud scene
at observation pixel scale with a set of prescribed cloud
parameters and to compute corresponding radiance fields.
Consequently, we simulated radiance field of an inhomoge-
neous cloud scene with variable cloud parameters in the
following way. In the first step, we generated an inhomo-
geneous cloud scene for a large cloud domain (6.4 km �
6.4 km domain in our case), much larger than the observa-
tion pixel, and simulated radiance fields for this large cloud
domain. In the second step, we computed area-averaged
radiances and corresponding variances as well as area-
averaged cloud parameters for observation pixels (1 km �
1 km pixels in our case), which were randomly sampled
within the above large cloud domain. This way of generating
radiance data excludes totally the definition of ‘direct cloud
model’ at the scale of observation pixel, and consequently
the parameter optimization or look-up table approach.
[11] We need to discuss briefly the problem of relation-

ships between cloud parameters of an inverse cloud model
(target vector) and available radiance and ancillary data
(input vector). An inverse cloud model is usually defined as
a compromise between the available radiance data and their
supposed information content on the one hand and the
attempt to retrieve as many independent and pertinent cloud
parameters as possible on the other hand. The cloud
parameter retrieval relies implicitly on a basic assumption
that there is a one-to-one correspondence between the target
vectors and input vectors. However, this basic assumption is
not verified in all over the input vector space even for the
simple plane-parallel homogenous cloud model, because
two different sets of cloud parameters may correspond to
the same set of radiance measured at two wavelengths in
some part of the input vector space. Compared with the
plane-parallel homogeneous inverse cloud with 2 cloud
parameters, the situation may be worse for inhomogeneous
clouds whose inverse cloud requires more than 2 cloud
parameters and a large number of input vector components.
[12] The inverse cloud used in this study is a cloud with

vertically uniform microphysical and optical properties, and

it is defined with 6 cloud parameters: mean optical thickness
(�tp), mean effective radius (�rp), standard deviation of optical
thickness (st,p), standard deviation of effective radius (sr,p),
fractional cloud cover (�f p), and cloud top temperature (�Tp).
Theses cloud parameters have been defined by assuming
that the effect of exact spatial distribution of fluctuations
within an observation pixel can be neglected as first order
approximation [Szczap et al., 2000a, 2000b]. For such an
inverse cloud, the one-to-one correspondence between tar-
get vectors and input vectors is only an approximate one
with inherent dispersions as shown in FIG01. It would be
also very difficult, from the practical point of view, to
ascertain that multiple solutions do not occur in such
approximate one-to-one correspondence between target
vectors and input vectors.

2.2. Brief Description of the MNN

[13] An MNN is an example of basis function models
having a remarkable flexibility to approximate a multivar-
iate function without knowing exactly its form [Hecht-
Nielsen, 1990; Denison et al., 2002]. Figure 1 represents
the general architecture of multiple-layer MNN with L
hidden layers. The input layer, numbered as 0th layer, does
not contain any real neuron because its role only is to spread
the input vector components to hidden cells in the 1st
hidden layer. The hidden layers numbered k = 1,. . ., L are
characterized by their weight matrices Wk, bias vectors bk,
and corresponding output vectors ak; the (L + 1)th layer is
the output layer. Each hidden layer contains a number of
hidden cells Nk. The relation between input and output
vectors of the kth layer is expressed by

ak ¼ fk xkð Þ with xk ¼ Wkak�1 þ bk ð1Þ

where fk is called ‘transfer function’ or ‘basis function’ of
the kth layer. Hierarchies of ‘hidden layers’ are often
constructed by using sigmoidal basis functions up to the last
layer to which a linear model or linear transformation is
usually fitted. A training data set is composed of a number
of patterns; a pattern associates a target scalar or vector and
input vector (tl, a0,l) with l = 1,. . .,M, where M is the size of
training data set. A back-propagation scheme enables to
estimate the weight matrices Wk and bias vectors bk by

Figure 1. Schematic description of feed-forward neural network architecture.
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minimizing a cost function; the square error is usually
adopted as cost function:

E ¼
XM
l¼1

aL;l � tl
� �t� aL;l � tl

� �
: ð2Þ

[14] One of the drawbacks of MNN function approxima-
tion is ‘over-training’ or ‘over-fitting’, which results in poor
generalization ability. Another drawback is that there is no
method to select ‘a priori’ an optimal structure of MNN
adapted to the available target and input vectors. We have to
be careful with errors induced by learning uncertainties in
weight vectors and by intrinsic noise on the target vectors
[Penny et al., 1999]. The Bayesian approach to neural
network training has provided some remedy to these prob-
lems [MacKay, 1992; Neal, 1996]. Indeed, MacKay’s
Bayesian approach contains a natural penalty against com-
plex models, so-called Occam’s razor, which states that a
simpler model is favored over a more complex one, all other
things being equal [Denison et al., 2002].
[15] After testing different MNN structures, we selected a

feed-forward MNN with 7 hidden cells in the first layer,
5 hidden cells in the second layer and 1 or 2 output cells in
the third layer. The basis functions are tangent hyperbolic
for the 1st and 2nd layers and the linear transformation in
the 3rd layer for most of retrieval and prediction tasks in this
study. We have trained all the MNNs by using the Leven-
berg-Marquardt algorithm for the back-propagation with
Bayesian regularization in the MATLAB neural network
toolbox. Compared with other training schemes, this
scheme can improve significantly the generalization ability
of the MNNs.

3. Radiance Database and MNN Training
Data Sets

3.1. Radiative Transfer Code

[16] Radiance fields of inhomogeneous clouds were com-
puted with SHDOM [Evans, 1998]. In its original version, it
takes into account of atmospheric effects for spectral broad-
bands defined by Fu and Liou [1992]. However, to generate
radiance data used for cloud parameter retrieval, we need
radiance fields computed for narrow bands. For this pur-
pose, the atmospherics part of Nakajima and Nakajima’s
code [1995] has been implemented in SHDOM; the absorp-
tion coefficients are interpolated for O2, CO, N2O, NH3,
NO, NO2, SO2, N2 and CH4 from LOWTRAN7 database
[Kneizys et al., 1988]. US standard atmosphere is used for
the temperature profile. To validate the ‘modified SHDOM’,
we compared it with Nakajima and Nakajima’s code for
homogeneous clouds and with MYSTIC [Mayer, 1999] for
inhomogeneous clouds respectively. The comparison has
been done for a visible wavelength (0.67 mm) and for a
thermal wavelength (11 mm); the ‘modified SHDOM’ was
found to agree with the other codes within ±2% except for
viewing directions close to horizontal plane.

3.2. Generation of Inhomogeneous Clouds With
Fractional Cloud Cover

[17] To prepare a radiance database for the MNN training,
we have to decide what cloud model to be used to generate
inhomogeneous cloud scenes. It should have microphysical,

structural and statistical characteristics as similar as possible
to those of natural clouds. Cahalan et al. [1994a] proposed
a 1D bounded cascade cloud to model measured fluctua-
tions of liquid water path, and Marshak et al. [1995]
extended the bounded cascade cloud model to 2D case.
Loeb et al. [1998] and Iwabuchi [2000] used a stochastic
cloud model based on the Gaussian process, which gener-
ates cloud scenes without a ‘un-natural’ appearance of
bounded cascade clouds. However, there is no experimental
data to validate statistical characteristics generated by a
Gaussian stochastic cloud. More recently, Roux et al.
[2000] have developed a cloud model based on wavelet
decomposition of natural cloud scenes and subsequent re-
composition by respecting their statistical characteristics.
Benassi et al. [2004] also have proposed the tdMAP cloud
model (tree-driven Mass Accumulation Process) based on a
tree structure where different items (function, random var-
iable, to shift branch, ‘pruning’..) are applied at each node.
However, one needs more detailed analysis before one can
use these new cloud models for the preparation of radiance
database. Hence, we decided to adopt the bounded cascade
clouds. The rationale for this choice is an implicit assump-
tion that the exact nature of ‘direct’ inhomogeneous cloud
models is not important as far as the inhomogeneous clouds
can be characterized by the first and second order moments
of sub-pixel scale fluctuations of cloud parameters. From
this point of view, it is better to select the bounded cascade
clouds, which allow a wide range of variability of cloud
parameters. We generated the fractional cloud cover by the
same method as in FIG01.
[18] Nakajima and Nakajima [1995] and Han et al.

[1998] showed that liquid water clouds over ocean
exhibited some degree of correlation between effective
radius and optical thickness, which varies from one cloud
scene to another. Assuming that such a correlation exists
also at sub-pixel scales, we generated fluctuations of effec-
tive radius and optical thickness at sub-pixel scales by using
the same technique as in FIG02.

3.3. Preparation of Radiance Database of
Inhomogeneous and Fractional Clouds

[19] Bounded cascade clouds were generated for a do-
main of 6.4 km � 6.4 km. This cloud domain is composed
of 128 � 128 elementary cells of 50 m � 50 m in horizontal
extension. The parameters H, p1 and p2 of the bounded
cascade model are set equal to 1/3, 0.26 and 0.34 respec-
tively, which corresponds approximately to �5/3 spectral
slope of variable fluctuations. The effective radius is com-
puted by assuming a lognormal droplet size distribution
with a constant standard deviation of 0.35 [Nakajima and
Nakajima, 1995].
[20] The present radiance database contains 6.4 km �

6.4 km inhomogeneous cloud scenes generated for four
different sets of ‘cloud-domain-mean’ optical thickness ~tD,
‘cloud-domain-mean’ effective radius ~rD and ‘cloud-
domain’ fractional cover ~f D (Table 1). The ‘pixel-mean’
optical thickness �tp, ‘pixel-mean’ effective radius �rp, stan-
dard deviation of optical thickness st.p, standard deviation
of effective radius sr.p, fractional cloud cover �f p and cloud
top temperature �Tp are estimated for randomly selected
(1 km � 1 km) observation pixels. The cloud top temper-
ature �Tp represents the mean cloud top temperature within
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an observation pixel. The standard deviation estimated over
the observation pixel represents the sub-pixel cloud inho-
mogeneity. We did not normalize the standard deviation
by the corresponding mean, because such a normalized
inhomogeneity parameter becomes too large for small
pixel-mean optical thickness or effective radius, which
deteriorates considerably the MNN training. The cloud
parameters estimated for (1 km � 1 km) pixels vary from
0 to 40 for optical thickness, from 0 to 27 mm for effective
radius, from 0 to 23 for standard deviation of optical
thickness, from 0 to 13 mm for standard deviation of
effective radius, and from 0 (cloud free pixel) to 1 (overcast
pixel) for fractional cloud cover respectively. The ranges of
variation of ‘pixel-mean’ optical thickness and effective
radius are similar to those observed by Nakajima and
Nakajima [1995]. However, these ranges of variation might
be too limited to cover all naturally possible range of cloud
parameters and environmental conditions.
[21] In addition to the microphysical and optical charac-

teristics and their horizontal inhomogeneity, we have to
consider, in principle, different cloud base heights and
geometrical cloud depths. For the homogeneous clouds,
we do not need to consider such variations at least for
visible and near infrared wavelengths, because their radi-
ance fields depend mostly on the cloud optical thickness
and not on the geometrical cloud depth. The situation
differs significantly for the inhomogeneous and fractional
clouds. In fact, the horizontal distribution of cloud shadows
and ‘hot spots’ on earth surface changes as the cloud
base height and/or geometrical cloud depth changes even
if its horizontal distribution of inhomogeneity remains
unchanged. Hence, the area-averaged radiance of the same
observation pixel may vary significantly with the variation
of cloud base height and/or depth. We evaluated the effect
of the cloud base height and geometrical cloud depth on the
area-averaged radiance for flat-top clouds, by simulating
radiance fields of an identical inhomogeneous cloud scene
over an underlying earth surface with small albedos of 0.05
and 0.1 (cf. Appendix A).
[22] Based on the results of this test, we have assumed, as

first order approximation, that the cloud base height and
geometrical cloud depth have only minor effect on the
radiance fields of GLI-channel Nos. 8, 28, and 29. This
assumption allows us to use only one geometrical cloud
characteristics for these wavelengths, i.e., a cloud base
height of 0.5 km and a cloud depth of 0.3 km, which are
typical geometrical characteristics of low-level stratiform
clouds. As for GLI-channel Nos.30 and 35, we have to take
into account the variation of the cloud geometrical charac-
teristics because of the thermal emission contribution.
Hence, we considered inhomogeneous clouds with a con-

stant geometrical depth of 0.3 km, but 3 different cloud base
heights of 0.5, 0.8, and 1.10 km respectively. Each cloud
cell is assumed presently to have vertically uniform micro-
physical and optical properties. We will evaluate biases of
retrieved cloud parameters due to this constant cloud depth
assumption in section 5.
[23] Radiance fields were computed for five wavelengths

0.544, 1.6, 2.15, 3.65 and 10.80 mm, which correspond to
the maximal response of GLI spectral channel Nos. 8, 28,
29, 30, and 35 respectively. For 0.544, 1.6, and 2.15 mm,
radiance simulations were done for surface albedo values of
0, 0.10, and 0.20, while the surface albedo was fixed to 0.05
and 0.0 respectively for 3.65 and 10.80 mm. The limited
range of albedo is assumed because our primary objective is
the application of the method to the clouds over ocean. For
the reason of simplicity, the underlying surface is assumed
as Lambertian, even if this assumption is questionable. The
radiance fields at 3.65 and 10.80 mm have important
contribution from cloud layer and earth surface thermal
emission; we computed them for 5 surface temperatures of
respectively 283, 288, 293, 303 and 313 K. As for the
temperature profile, the US standard temperature profile
was shifted globally as a function of surface temperature.
Radiance fields were computed for the following solar
incidence-viewing configuration:
[24] - 10 solar incidence angles (from 0� to 67.5 by step

of 7.5�) except thermal infrared bands (channel No.35).
[25] - 130 viewing directions (from 0� to 67.5� by step of

7.5� for zenithal angle and from 0� to 180� by step of 15�
for azimuthal angle).
[26] Our radiance database for inhomogeneous and frac-

tional clouds contains presently about 600 simulations of
6.4 km � 6.4 km cloud domain, which represents roughly a
year of continuous running of COMPAQ ES40 Workstation
(4 processors and 8 Gbytes of RAMs). This very time-
consuming database preparation is the main drawback of the
MNN approach, which explains why our radiance database
is limited presently to only 4 cloud scenes of constant cloud
depth and why we could include neither oxygen absorption
band nor non-flat-top inhomogeneous clouds in the present
radiance database.

3.4. Characteristics of Cloud Properties and Radiance
Data at Observation Pixel Scale

[27] Before discussing MNN training, we have to inves-
tigate what kinds of correlations exist between cloud
parameters and corresponding radiance data. We computed
radiance data at (1 km � 1 km) pixel for 5 wavelengths
0.544, 1.6, 2.15, 3.65 and 10.80 mm and 3 standard devia-
tions of radiance estimated over (1 km � 1 km) pixel from
0.25 km � 0.25 km pixel at 0.544, 1.60, and 2.15 mm. We
will briefly discuss below only the correlation between the
cloud parameters and radiance data from all the correlation
analyses done with these data. Table 2 shows the correlation
coefficients between the cloud parameters and radiance
data; we also presented coefficients of multiple determina-
tion (Gmulti)

2, which measure the fraction of variance of a
dependent variable which can be explained by a linear
combination of explanatory variables [Legendre and
Legendre, 1998].
[28] First of all, the coefficients of multiple determination

indicate that the variances of cloud parameters (�tp, �rp, st.p,

Table 1. Characteristics of the Cloud Domains Used for Radiance

Simulationa

~tD ~rD, mm ~f D ~GD

5 10 0.8 0.70
10 12 0.8 0.69
12 10 0.6 0.84
15 20 0.6 0.82

a~tD, mean optical thickness over cloud domain; ~rD, mean effective radius
over cloud domain; ~f D, fractional cloud cover over cloud domain; ~Gd,
correlation coefficient between ~tD and ~rD estimated over cloud domain.
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sr.p, �f p and �Tp) can be explained up to about 98%, 84%,
94%, 56%, 88% and 65% respectively by linear combina-
tions of 8 radiance data (R0.544, R1.60, R2.15, R3.65, R10.80,
sR0.544, sR1.60, sR2.15). This implies that �tp and st.p might
be retrieved ‘almost’ by using simple linear multivariate
regression, while the other cloud parameters, in particular
sr.p, require probably more complex non-linear regression.
This finding justifies the present retrieval of cloud param-
eters based on the application of MNNs, and not on linear
multivariate regressions.
[29] Table 2 suggests that the information about the cloud

parameters �tp, �rp, and �f p is essentially carried by R0.544,
R1.60, R2.15, R3.65, and R10.8, while the information about
the cloud parameters st.p and sr.p is more widespread.
However, these correlation coefficients do not provide a
clear-cut interpretation about the dependency of cloud
parameters on these radiance data, because of the redun-
dancy between these explanatory variables. The correlation
coefficients of �tp indicate that its retrieval depends on
R0.544, R1.60, R2.15 and R3.65 in decreasing order, which
corresponds to a decreasing sensitivity of these radiances on
the optical thickness. The correlation is also important with
R10.80, which is because the optical thickness is associated
with fractional cloud cover, and thermal radiation emitted
by the ground is more or less transmitted as a function of
fractional cloud cover. The correlation coefficients of �rp
show curiously that its retrieval does not depend on R2.15 or
R3.65, but on R0.544 and R1.60. This can be explained by the
fact that the effect of optical thickness should be first
removed from R1.60, R2.15 and R3.65 for fractional cloud
condition. The dependency on R2.15 and R3.65 is recovered
when we looked at totally cloudy pixels (number in paren-
thesis); in this case, the correlation coefficients of �rp show
that its retrieval depends on a combined contribution of
R1.60, R2.15, and R3.65 all of which are informative on the
effective radius to some degree. The behavior of correlation
coefficients of st.p is quite similar to those of �tp with a
notable difference that it has a rather high correlation with
sR0.544, which implies that sR0.544 carries independent
information about the sub-pixel inhomogeneity of optical
thickness. We do not find such results with the correlation
coefficients between sr.p and sR1.60, sR2.15, but it should be
reminded that sr.p is the least explained of the 5 cloud
parameters by linear multivariate regression of radiance data
as suggested by its moderate coefficient of multiple deter-
minations. Naturally, the correlations coefficients of �f p and
�Tp indicate that their retrieval depends mainly on R10.80.
The correlation coefficients of �f p with other mean radiances

are quite high because the present database is composed
only of cloud domain with fractional cloud cover and no
overcast cloud domain.

4. Retrieval Procedure of Cloud Parameters of
Inhomogeneous and Fractional Clouds

4.1. General Structure of Retrieval Procedure

[30] The procedure of cloud parameter retrieval devel-
oped in the present study comprises two distinct steps
(Figure 2). The first step is the interpolation-correction of
radiance data. The channels Nos. 8, 28, and 29 require the
interpolation to the nearest MNN I-V configuration and the
correction of albedo effect for both the area-averaged
radiance and standard deviation. The channel No.30
requires the interpolation to the nearest MNN I-V config-
uration and the correction of emission effects, and the
channel No.35 only the interpolation to the nearest MNN
I-V configuration. The interpolation and correction have
been done in one step instead of doing them in two separate
steps. The second step is the cloud parameter retrieval as
such from the interpolated and corrected radiance data.
FIG01 investigated only the feasibility of this second step

Table 2. Correlation Coefficients Between Cloud Parameters and Radiance Data: Coefficients of Multiple Determination [(Gmulti)
2] and

Correlation Coefficientsa

(Gmulti)
2 R0.544 R1.60 R2.15 R3.65 R10.80 sR0.544 sR1.60 s2.15

�tp 0.984 0.952 0.818 0.684 0.184 �0.622 0.344 0.008 �0.079
�rp 0.836 0.673 (0.237) 0.590 (�0.110) 0.450 (�0.454) �0.033 (�0.878) �0.724 (�0.163) 0.041 (�0.120) �0.285 (�0.426) 0.382 (�0.497)
st.p 0.936 0.665 0.487 0.365 �0.079 �0.274 0.747 0.444 0.299
sr.p 0.559 0.184 0.079 �0.032 �0.329 �0.237 0.332 0.085 �0.039
�f p 0.875 0.740 0.842 0.828 0.595 �0.835 0.001 �0.209 �0.240
�Tp

0.651 0,003 0,001 0,001 0,002 0,462 0.016 0.004 0,000

aNumbers in parentheses correspond to almost totally cloudy pixels ( �f p > 0.9). �tp, mean optical thickness; �rp, mean effective radius; st.p, standard
deviation of optical thickness; sr.p, standard deviation of effective radius; �f p, fractional cloud cover; �Tp, cloud top temperature. R0.544, R1.60, R2.15, R3.65,
R10.80: radiances of 0.544, 1.6, 2.15, 3.65 and 10.80 mm. sR0.544, sR1.60, sR2.15, standard deviations of radiance of 0.544, 1.6, and 2.15 mm computed from
0.25 � 0.25 km2 pixels.

Figure 2. General organization of cloud parameter
retrieval procedure.
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without discussing the feasibility of the first step that is
essential for the development of the cloud parameter re-
trieval of inhomogeneous clouds. The main reason to
separate the cloud parameter retrieval into two steps is that
no earlier study has showed that we could do such interpo-
lation-correction for inhomogeneous clouds with acceptable
accuracy.

4.2. Interpolation-Correction MNNs

[31] To interpolate radiance from a given I-V configura-
tion to the nearest MNN I-V configuration, we have to
include all the angular deviations between these two con-
figurations as input vector components. Hence, to train the
interpolation-correction MNN for a given MNN I-V con-
figuration with solar incidence angle q0(i), viewing azimuth
angle jv( j), and viewing zenithal angle qv(k), we have to
consider a total of 27 I-V configurations, which includes
26 neighbor I-V configurations with [q0(i ± 1), jv( j ± 1),
qv(k ± 1)] and target configuration [q0(i), jv( j), qv(k)] itself
in the training data set. The interpolation can be easily done
in theory if the knowledge of the optical thickness and
effective radius is available. Instead, we have to replace here
this knowledge by the knowledge of radiances informative
on these parameters. We also have to include some ancillary
data to do this interpolation-correction: the ground surface
albedo if radiance depends on the surface albedo and the
ground surface temperature if radiance depends on the
surface temperature. Since the ground surface albedo
depends on surface types and varies nonlinearly with the
wavelength [Lucht et al., 2000], we have to include as many
surface albedos as the number of wavelengths as input
vector components.
4.2.1. Interpolation and Correction of Albedo Effect
for 0.544, 1.6 and 2.15 Mm Channels
[32] Figures 3a and 3b show the effect of albedo on the

area-averaged radiance and standard deviation of radiance
for a wavelength of 1.6 mm; the solar incidence angle is 30�,
viewing direction (qv = 30�, jv = 90�) and the ground

surface albedo of 0, 0.1 and 0.2 respectively. The general
features observed in Figures 3a and 3b are roughly the same
when the solar incidence angle and viewing direction
change, but also when the wavelength changes from
1.60 mm to 0.544 and 2.15 mm. The albedo effect is not
uniform and varies with the optical thickness, fractional
cloud cover and inhomogeneity parameter. As expected, the
albedo effect in the area-averaged radiance, which is always
positive, is small for large optical thickness while it
becomes large and more dispersed for small optical thick-
ness. The albedo effect in the standard deviation of radi-
ance, which is negative in most of cases, is large and
dispersed for large optical thickness, while it becomes
generally small and less dispersed for small optical thick-
ness. There are some cases with large positive effect for
small optical thickness, which correspond to pixels with
small fractional cover over underlying surface with albedo
of 0.2. This particular behavior of albedo effect on the
standard deviation can be easily explained by the fact that
the standard deviation of radiance increases because some
radiance comes from clear sky region when earth surface is
reflecting, while no radiance comes from clear sky region
when earth surface is totally absorbing.
[33] The output and input vectors to the interpolation-

correction MNNs are:
[34] Output vector with 2 components:
[35] - Area-averaged radiance and standard deviation

of radiance at one of the three wavelengths (0.544, 1.6,
2.15 mm) over totally absorbing earth surface in the nearest
MNN I-V configuration;
[36] Input vector with 12 components:
[37] - 3 angular distances between an arbitrary I-V

configuration to the nearest MNN I-V configuration;
[38] - 3 area-averaged radiances (R0.544, R1.60, R2.15)

measured at an arbitrary I-V configuration;
[39] - 3 standard deviations of radiance (sR0.544, sR1.60,

sR2.15) estimated from 250 m � 250 m pixels;
[40] - 3 values of albedo of 0.544, 1.60 and 2.15 mm.

Figure 3. (a) Area-averaged radiances at 1.6 mm with underlying reflecting surface (albedo: 0, 0.1 and
0.2) as a function of radiances at 1.6 mm above totally absorbing surface. (b) Standard deviation of
radiance at 1.6 mm with underlying surface (albedo: 0, 0.1 and 0.2) as a function of standard deviation of
radiances at 1.6 mm above totally absorbing surface, (q0 = 30�, jv = 90�, qv = 30�).
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[41] The training was done with 10000 randomly selected
patterns, and the generalization performance was esti-
mated with other 5000 randomly selected patterns; in
principle there is only a few overlapping patterns in
the training and generalization data sets. There are
1170 MNNs to train, each corresponding to a MNN I-V
configuration (9 solar incidence angles � 130 observation
directions).
[42] Interpolated-corrected radiance is shown in Figure 4a

and standard deviation in Figure 4b as a function of target
values for 5 viewing zenithal angles (qv = 0�, 15�, 30�, 45�,
60�) and a viewing azimuth angle of 90�. The input vectors
used for this test are ‘error-free’ in the sense that radiance
values computed by SHDOM are directly used without any
additional errors. The RMSE of interpolated-corrected area-
averaged radiance varies with MNN I-V configurations, but
remains less than 2 W.m�2.sr�1 for most of the MNN I-V
configurations; a maximum RMSE of 3 W.m�2.sr�1 occurs
in the backward scattering direction. Since the dispersion of
interpolated-corrected radiance changes slightly with its
‘target’ values, the relative error would remain less than
5% for large target values, while it becomes more than 10%
for small target values.
[43] The general features of interpolated-corrected stan-

dard deviation do not differ very much from those
observed for the area-averaged radiance, except that the
corresponding RMSE remains lower than 1 W.m�2.sr�1

for most of the MNN I-V configurations. The dispersion
increases with the increase of viewing zenithal angle.
This behavior can be explained by the fact that the more
oblique the viewing direction is, the more uniform the
cloud scene appears; this can be seen by the more
limited range of standard deviation for the viewing
zenithal angle of 60� and the ones for 30� and 0�. The
relative error in interpolated-corrected standard deviation
is slightly larger than that obtained for the area-averaged
radiance. These features of interpolation-correction MNNs
vary slightly for the other wavelengths (0.544 mm and
2.15 mm).

4.2.2. Interpolation and Correction of Emission Effect
for 3.65 and 10.80 Mm Channels
[44] Since information on the effective radius is mostly

carried by reflected solar radiation, we have to remove the
contribution of thermal emission from measured 3.65 mm
radiance. This correction is an important source of uncer-
tainty in the retrieved cloud effective radius. Nakajima and
Nakajima [1995] gave a brief summary of different earlier
methods. Coakley and Davies [1986] used an empirical
relation between night 3.65 mm radiances and thermal
infrared radiances to remove the contribution of emission
at 3.65 mm. Kaufman and Nakajima [1993] subtracted
thermal radiation from 3.65 mm radiance by using an
effective temperature estimated from thermal infrared radi-
ance and an optical thickness guessed from visible channel.
Recently, Kawamoto et al. [2001] have proposed a more
sophisticated method in which they integrated tropospheric
temperature and humidity profiles provided by a meteoro-
logical analysis as ancillary data. Our method does not take
presently into account of water vapor amount in the atmo-
sphere, but it can easily be modified to include them. The
thermal emission radiation is to be removed simultaneously
with the interpolation of 3.65 mm radiance component due
to reflected solar radiation to the nearest MNN I-V config-
uration. As for the thermal infrared radiance, we have to
interpolate it to the nearest MNN I-V configuration if we
want to include radiance at a thermal infrared wavelength
(10.80 mm in our case) as an input vector component for
cloud parameter retrieval. As seen in Table 2, the thermal
infrared radiance is an important radiance data to retrieve
the fractional cloud cover, in addition to its evident impor-
tance for the retrieval of cloud top temperature.
[45] Figure 5 represents the thermal emission at 3.65 mm

from inhomogeneous cloud pixels as a function of
corresponding radiance at 10.80 mm for an observation
direction of (q0 = 30�, jv = 90�). The thermal emission at
3.65 mm exhibits some significant dispersion due to optical
thickness, effective radius, and fractional cloud cover in
addition to its dependency on surface temperature and cloud

o

o

o

o

o

o

o

o

o

o

Figure 4. (a) Interpolated-corrected area-averaged radiance at 1.6 mm as a function of target area-
averaged radiance at 1.6 mm. (b) Interpolated-corrected standard deviation of radiance at 1.6 mm as a
function of target standard deviation of radiances at 1.6 mm. For each viewing angle presented, the values
are shifted upward for better visual clarity, (q0 = 30�, jv = 90�).
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top altitudes. To approximate these points with a unique
empirical relation as proposed by Coakley and Davies
[1986] results necessarily in a rather important error in
R3.65 and consequently in retrieved effective radius.
[46] The output and input vectors to the interpolation-

thermal emission correction MNNs are
[47] Output vector:
[48] - area-averaged radiance due to the thermal emission

at 3.65 mm at the nearest MNN configuration;
[49] Input vector with 10 components:
[50] - 3 angular distances between an arbitrary I-V

configuration to the nearest MNN I-V configuration;
[51] - 4 area-averaged radiances (R0.544, R2.15, R3.65,

R10.80) measured at an arbitrary I-V configuration;
[52] - 2 values of albedo for two wavelengths (0.544 and

2.15 mm);
[53] - 1 surface temperature.
[54] For the interpolation of thermal radiance at 10.80 mm,

we used the same MNN architecture as the one for the
3.65 mm interpolation-correction. In this case, the output
vector is the area-averaged radiance due to thermal emission
at 10.80 mm at the nearest MNN configuration, while the
input vector is the same, but without R3.65.
[55] The training of MNNs was done with 5000 patterns

randomly chosen from the database. The training was done
for each MNN I-V configuration in spite of the fact that
thermal emission fields are axisymmetrical with respect to
the vertical direction. This is because 0.544 mm and
2.15 mm radiances used as input vector components
depend on the solar incidence and viewing directions.
Figure 6 presents the 3.65 mm radiance corrected for
its thermal emission as a function of target values for
5 viewing zenithal angles (qv = 0�, 15�, 30�, 45�, 60�) and a
viewing azimuth angle of 90�; the solar incidence angle is
30�. The input vectors used for this test are also ‘error-
free’. There is no significant variation of dispersion with
the viewing zenithal angle. The polar representation of
RMSEs (not shown here) show that the RMSE remains less
than 0.017 W.m�2.sr�1 for most of the MNN I-V config-

urations; a maximum RMSE of about 0.025 W.m�2.sr�1

occurs in the backward scattering direction.
[56] Figure 7 shows the generalization performance

of interpolation MNNs for thermal infrared wavelength
10.80 mm for the same MNN I-V configurations. This figure
shows no significant variation of dispersion with the view-
ing zenithal angle up to 45�.

4.3. Cloud Parameter Retrieval MNNs

[57] Radiance data corrected for the albedo effect and/or
thermal emission effect were used to train cloud parameter
retrieval MNNs. The input vector components may vary
from one cloud parameter to the others because of redun-
dant information content. However, in this study, we have
used all the available radiance data for every cloud param-
eter without any particular effort to choose a minimal
number of informative data for each cloud parameter.
The architecture of MNNs is the same as those used for
the interpolation-correction. We performed two series of
training:
[58] - the 1st series of training was done with input

vectors composed of 5 area-averaged radiances (0.544,
1.6, 2.15, 3.65 and 10.80 mm) and surface temperature as
ancillary data;
[59] - the 2nd series of training was done with input

vectors composed of 5 area-averaged radiances (0.544, 1.6,
2.15, 3.65 and 10.80 mm) and surface temperature as
ancillary data and 3 standard deviations of radiance
(0.544, 1.6 and 2.15 mm).
[60] The two training sets are composed of the same 2000

observation pixels we have randomly selected from our
database so that the performance of MNNs might be easily
compared between the two series.
[61] For the 1st series of training, we are trying to retrieve

6 cloud parameters from 5 radiance data; the 6th input
vector component, surface temperature, is ancillary and
does not depend on any cloud property. From this point
of view, the 1st series of training might be flawed in its

Figure 5. The 3.65 mm thermal emission as a function of
10.80 mm radiances of inhomogeneous clouds with variable
optical thickness, effective radius, cloud base height, and
underlying surface temperature, (jv = 90�, qv = 30�).

o

o

o

o

o

Figure 6. Reflected solar radiation component of 3.65 mm
radiance computed with MNN as a function of its true
values computed with SHDOM. For each viewing angle
presented, the values are shifted upward for better visual
clarity, (q0 = 30�, jv = 90�).
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principle, and it might impose spurious correlation between
retrieved cloud parameters. Furthermore, since multispectral
radiance data are highly correlated data, we have to extract
independent and informative part from measured radiance,
which varies with cloud characteristics and I-V configura-
tion and may become too small to be extracted for certain
cloud conditions and/or viewing configuration.
[62] Figures 8a–8f present the performance of two types

of cloud parameter retrieval MNNs for a solar incidence
angle of 30�. RMSEs are plotted as a function of viewing
zenithal angle for 3 conditions: training, generalization with
error-free input vectors, and generalization with input vec-
tors with uniform random error less than 2%. The RMSEs
obtained for error-free input vectors represent a reference
intrinsic dispersion of cloud parameter retrieval MNNs.
These figures show clearly that the additional input vector
components sR0.544, sR1.60, and sR2.15 can improve signif-
icantly the training and generalization performance of cloud
parameter retrieval MNNs. However, as suggested by
Szczap et al. [2000a, 2000b] and FIG01, the area-averaged
radiance itself carries the information about the sub-pixel
cloud inhomogeneity, because the sub-pixel cloud inhomo-
geneity in optical thickness and effective radius can be

o

o

o

o

o

Figure 7. The 10.80 mm radiance interpolated to the
nearest MNN I-V configuration as a function of the
corresponding true values computed with SHDOM. For
each viewing angle presented, the values are shifted upward
for better visual clarity, (q0 = 30�, jv = 90�).

Figure 8. Comparison of the performance of two types of cloud parameter retrieval MNNs. (q0 = 30�,
jv = 90�). The first one trained with additional input components sR0.544, sR1.60, and sR2.15, and the
second one without additional input components sR0.544, sR1.60, and sR2.15. (a) Mean optical thickness,
(b) mean effective radius, (c) optical thickness inhomogeneity, (d) effective radius inhomogeneity,
(e) fractional cloud cover, and (f) cloud top temperature.

D12203 CORNET ET AL.: NEURAL NETWORK CLOUD RETRIEVAL

10 of 20

D12203



retrieved without the additional input components of
sR0.544, sR1.60, and sR2.15.
[63] The retrieval of the mean optical thickness �tp is

improved by the inclusion of standard deviations of radi-
ance in spite of what the linear multiple correlation analysis

has suggested above (cf. Table 2). However, the improve-
ment may appear less significant for large zenithal angles
qv > 30� than for small zenithal angles qv < 30�, which can
be explained by the fact that sR0.544, sR1.60, and sR2.15 carry
less information about the sub-pixel cloud inhomogeneity

Figure 9. Comparison between retrieved and initial cloud parameters for 5 observation directions. (q0 =
30�, jv = 90�). (a) Mean optical thickness, (b) mean effective radius, (c) optical thickness inhomogeneity,
(d) effective radius inhomogeneity, (e) fractional cloud cover, and (f) cloud top temperature. For each
viewing angle presented, the values are shifted upward for better visual clarity.
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for large viewing zenithal angles than for small viewing
zenithal angles as discussed in 4.2. Compared with the
limited improvement for �tp and Ttop, the retrieval of other
cloud parameters (�rp, st.p, sr.p, and �f p) is significantly
improved for all observation directions. Consequently, we
will include the standard deviations of radiance sR0.544,
sR1.60, and sR2.15 as input vector components in the present
retrieval procedure.
[64] In Figure 9, we plotted cloud parameters retrieved

with additional input components sR0.544, sR1.60, and sR2.15;
the solar incidence angle is 30� and the viewing direction
(q0 = 30�, jv = 90�). The overall performance of the cloud
parameter retrieval MNNs is relatively satisfactory in spite
of an inherent dispersion. The dispersion tends to increase
with the viewing zenithal angle for cloud parameters �tp, �rp,
st.p, sr.p and �f p. These dispersions may be due to three
factors. Firstly, the MNN is only a method to approximate a
multivariate function without knowing exactly its functional
form, which necessarily implies some degree of intrinsic
approximation errors. Secondly, the correspondence be-
tween available radiance data and cloud parameters is not
a strict one-to-one correspondence, but an approximate one
with inherent dispersions. The third factor is that a pixel size
of 1 km is probably too small to neglect the contributions
of neighboring pixels even for a geometrical cloud depth of
0.3 km [Szczap et al., 2000a].
[65] In order to compare the cloud parameter retrieval

under the inhomogeneous cloud assumption with the one
under the plane parallel homogeneous cloud assumption, we
trained specially an MNN with 2 input vector components
(R0.544 and R3.65) and 2 outputs (optical thickness and
effective radius) under the plan-parallel homogeneous cloud
assumption. The radiance data used for this test come from
bounded cascade clouds; the solar incidence angle is 30� and
the viewing direction is jv = 60� and qv = 15�. We plotted the
cloud parameters retrieved under the homogeneous cloud
assumption in addition to the ones retrieved under the
inhomogeneous cloud assumption (Figure 10). We separated
them into two groups: the first group contains the retrieved
parameters for �f p < 0.9) and the second group for �f p � 0.9.
[66] The plane-parallel homogeneous optical thickness

shows an approximately linear variation with the target
optical thickness, except that it underestimates significantly
the target optical thickness. This behavior can be easily
explained by the fact that R0.544 varies mostly with the
optical thickness; for a given mean optical thickness it is
always smaller for inhomogeneous clouds than for homo-
geneous ones. The retrieved optical thicknesses of the first
group tend to be slightly larger than those of the second
group, because a larger fractional cloud cover exhibits
usually a larger sub-pixel inhomogeneity. A small dispersion
of retrieved optical thickness for small to moderate optical
thickness can be explained by the fact that the radiance
increases very rapidly for small to moderate optical thick-
ness, and as a consequence, the retrieved optical thickness
exhibits fairly small dispersions in spite of the effect of cloud
inhomogeneity. The lack of large dispersion for moderate to
large true mean optical thickness may be due to the fact that
there are only a few observation pixels with large optical
thickness in our radiance database.
[67] As for the effective radius, the situation differs

considerably from the one for the optical thickness. The

homogeneous effective radius increases roughly with the
true mean effective radius with a very large dispersion for
�rp > 10 mm, while it also exhibits a clear bias in addition
to the large dispersion for �rp 	 10 mm. The plane-parallel
effective radius tends to overestimate the true mean
effective radius. This fact agrees with earlier finding that
the ‘effective’ single scattering albedo becomes smaller
than the true single scattering albedo when an inhomoge-
neous cloud is treated as a plane-parallel homogeneous
cloud [Szczap et al., 2000a]. The effective radius of the
first group exhibits much larger dispersion than that of the
second group, which shows that the large dispersion of
retrieved effective radius is due mostly to the effect of
fractional cloud cover within observation pixels. The very
large dispersion, especially large biases observed for �rp 	
10 mm, may be due to the occurrence of multiple solutions
that results in a poorer performance of the MNNs in that
range of effective radius.

5. Performance of the Whole Retrieval Procedure

[68] Since we have ascertained the feasibility of each step
in the MNN retrieval procedure, we have to test the whole
retrieval procedure (the interpolation-correction step and
cloud parameter retrieval step).

5.1. Clouds Generated With Bounded Cascade
Cloud Model

[69] Since all the MNNs have been trained with radiance
data computed for inhomogeneous clouds with a cloud
depth of 0.3 km, we need to evaluate biases in retrieved
cloud parameters when we apply these MNNs to inhomo-
geneous clouds with different geometrical cloud character-
istics. Hence, we applied the retrieval procedure to
following two bounded cascade clouds:
[70] 1 – A bounded cascade cloud with ~tD = 12, ~rD =

10 mm, and ~f D = 0.7 with a geometrical cloud depth of
0.30 km; the radiance fields are computed for solar incident
angle of 27� and underlying surface albedo of 0.12, 0.15,
0.05, 0.05 and 0 respectively for 0.544, 1.6, 2.15, 3.65 and
10.80 mm with viewing angular resolutions of (dq = 3.75�,
dj = 7.5�).
[71] 2 – A bounded cascade cloud with ~tD = 10, ~rD =

10 mm, and ~f D = 0.8 with a geometrical cloud depth of
0.90 km; the radiance fields are computed for the solar
incidence angle of 45� and totally absorbing underlying
surface albedo with viewing angular resolutions of (dq =
7.5�, dj = 15�).
[72] Figures 11a to 11e represent retrieved mean optical

thickness, mean effective radius, optical thickness inhomo-
geneity, effective radius inhomogeneity, and fractional
cloud cover; the cloud top temperature has not been
retrieved because it is set constant of 283 K. The retrieved
parameters are shown for viewing directions of (jv =
127.5�, qv = 26.75�) for 0.3 km cloud and (�jv = 90�, �qv =
30�) for 0.9 km cloud respectively. These figures show that
the cloud parameters of bounded cascade clouds may be
retrieved reasonably well in spite of fairly large dispersions
inherent to the various underlying assumptions. It is inter-
esting to remark that the geometrical cloud depth does not
lead to any visible systematic bias in the retrieved cloud
parameters, expect in the fractional cloud cover.

D12203 CORNET ET AL.: NEURAL NETWORK CLOUD RETRIEVAL

12 of 20

D12203



[73] The optical thickness retrieved for 0.3 km cloud is
slightly biased, and its deviation increases with target
optical thickness, while optical thickness retrieved for
0.9 km cloud show no systematic bias. In spite of this
bias in the optical thickness, the effective radius retrieved
for 0.3 km cloud agrees fairly well with the target effective
radius with an overall RMSE of 1.90, while the effective
radius retrieved for 0.9 km shows an overall RMSE of
1.93. The dispersion is larger for small target effective
radius than for large target effective radius. As for the
standard deviation of optical thickness of 0.3 km cloud, its
RMSE is 2.01, which is much larger than the reference
RMSE of cloud parameter retrieval MNN (normally less
than 1 as shown in Figure 9c). It also exhibits a slight
positive bias for target standard deviations larger than 6,
which should be associated with the bias in mean optical
thickness. The corresponding RMSE of 0.9 km cloud is
1.14; there seems a slight negative bias for all the range of
target standard deviation, which is compatible with the
underestimation of sR0.544, sR1.60, and sR2.15 (cf. A.2c).
As for the standard deviation of effective radius, retrieved
values agree fairly well with the target values for both
clouds with RMSEs of 1.13 and 1.12 respectively. The
fractional cloud cover retrieved for 0.3 km cloud agrees
fairly well with the target values while the one retrieved
for 0.9 km cloud exhibits an overestimation for fractional
cover less than 0.9. This overestimation should correspond
to the underestimation of sR1.60 and sR2.15 (cf.
Figure A2c). This implies that even if fractional cloud
cover is associated mainly with R10.80 (Table 2), the
MNNs still use sR0.544, sR1.60, and sR2.15 as informative
input data for the retrieval of fractional cloud cover.

5.2. Clouds Generated With Gaussian Process

[74] We have indicated above that the rationale to chose
bounded cascade clouds for the preparation of radiance data
set is that the exact types of ‘direct’ inhomogeneous clouds

are not important as far as the inhomogeneous clouds are
characterized by the first and second order moments of sub-
pixel scale variances of cloud parameters. Moreover, all the
clouds used for neural network training are flat-top clouds,
while it is well known that the cloud top height variation
may have important effects on the radiance fields, and
consequently on the retrieved optical thickness [Loeb et
al., 1998; Varnai, 2000; Iwabuchi and Hayasaka, 2002].
One may ask how the present retrieval procedure performs
when it is applied to radiance data of inhomogeneous clouds
other than bounded cascade clouds.
[75] We applied the retrieval procedure to two Gaussian

inhomogeneous clouds [Barker and Davies, 1992; Loeb et
al., 1998] with ~tD = 10, ~rD = 5 mm, ~f D = 0.70: the one with
a constant geometrical cloud depth of 0.3 km and the
second with non-flat-top cloud. The optical thickness field
generated has a spectral slope of �1.6 before to add the
fractional cloud cover. The non-flat-top cloud was created
by using the relation

Ztop ¼ ZDh i �
ffiffiffiffiffiffiffiffiffi
t
tDh i

r

where Ztop represents the geometrical cloud depth of an
elementary pixel, and hZDi the domain mean geometrical
cloud depth. The cloud base was set at 0.5 km and the mean
geometrical cloud depth at 0.3 km for cloudy part. The
radiance fields were computed for a surface albedo of 0.1,
0.1, 0.2, 0.05 and 0 respectively for 0.544, 1.6, 2.15, 3.65
and 10.80 mm and a solar incident angle of 42� with viewing
angular resolutions (dq = 3.75�, dj = 7.5�).
[76] Figures 12a to 12e present the retrieved cloud

parameters of these flat-top and non-flat-top clouds for a
viewing direction of (jv = 127.5�, qv = 26.25�). The
ranges of variation of cloud parameters are very much
limited for these Gaussian process clouds than the
bounded cascade clouds. These figures shows globally

Figure 10. Comparisons of optical thickness and effective radius retrieval based on a plan parallel cloud
inverse model or on an inhomogeneous cloud model. (a) Optical thickness and (b) effective radius
retrieved from a cloud generated with the bounded cascade model. The cloud parameters retrieved under
the plane-parallel homogeneous cloud are separated into two groups as a function of fractional cloud
cover: �f p < 0.9 and �f p � 0.9. Solar incidence angle is 30�. Viewing angles are (jv = 60�, qv = 15�).
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Figure 11. Comparison between retrieved and initial cloud parameters for bounded cascade clouds with
geometrical cloud depth of 0.3 km and 0.9 km respectively: (a) mean optical thickness, (b) mean effective
radius, (c) optical thickness inhomogeneity, (d) effective radius inhomogeneity, (e) fractional cloud cover.
Solar incidence angle is 27� for 0.3 km cloud and 45� for 0.9 km (the values are shifted for better visual
clarity). Viewing directions are (jv = 127.5�, qv = 26.75�) for 0.3 km cloud and (jv = 90�, qv = 30�) for
0.9 km.
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that the cloud parameters of Gaussian process clouds can
be retrieved with the same order of RMSEs as those of
bounded cascade clouds in spite of the MNNs trained with
radiance data of the bounded cascade clouds, except some
dispersion observed in the optical thickness and its stan-
dard deviation of non-flat-top Gaussian process cloud.
[77] The optical thickness retrieved for the flat-top

Gaussian cloud agrees well with the target values with
any systematic bias such as the one observed for the
0.3 km bounded cascade cloud (Figure 11a). Its standard

deviation varies in a very limited range (from 3 to 8)
compared with the range from 2 to 16 for the bounded
cascade clouds. In spite of an impression of large disper-
sion (Figure 12c), its RMSE is quite small of only 0.95.
However, the retrieved optical thickness and its standard
deviation of the non-flat-top cloud exhibit larger disper-
sion. This increase in the dispersion reflect the fact that the
non-flat-top clouds have different radiances and different
standard deviation of radiance than the flat-top clouds in
visible and slightly absorbing near infrared wavelengths

Figure 12. Comparison between retrieved and initial cloud parameters for Gaussian process
inhomogeneous clouds with flat-top and non-flat-top: (a) mean optical thickness, (b) mean effective
radius, (c) optical thickness inhomogeneity, (d) effective radius inhomogeneity, (e) fractional cloud cover
and (f ) cloud top temperature. Solar incidence angle is 42�. Observation direction is (jv = 127.5�, qv =
26.75�).
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[Loeb et al., 1998; Varnai, 2000; Iwabuchi and Hayasaka,
2002]. The figures also show that the dispersions of the
other retrieved parameters become larger for the non-flat-
top cloud than the flat-top cloud.
[78] The retrieved effective radius of the flat-top cloud

agrees fairly well with its target values beyond 5 mm in spite
of rather large dispersion, while it overestimates the target
values for smaller effective radius; we have not observed
such bias for bounded cascade clouds. The corresponding
standard deviation also varies in the very limited range
(from 2 to 4) compared with the range from 1 to 12 for the
bounded cascade clouds. Figure 12d shows the occurrence
of overestimation around sr = 4 mm. This may be due to the
fact that some input vectors for Gaussian process clouds are
not covered by the space defined by the input vectors for
bounded cascade clouds. Nevertheless, the RMSEs remain
relatively small of only 1.47 for the mean effective radius
and 0.63 for its standard deviation. These features are quite
similar to those of the non-flat-top cloud. The retrieved
effective radius and its standard deviation do not show any
systematic bias. The corresponding RMSEs are 1.79 for the
mean effective radius and 0.88 for its standard deviation,
slightly larger than those observed for the flat-top cloud.
This seems to imply that the radiance data that are infor-
mative of the effective radius are less affected by the
variable cloud top. The fractional cloud cover retrieved
for both the Gaussian process cloud agrees reasonably well
with the target values for 0.7 < �f p, while it exhibits an
overestimation for �f p < 0.7. This behavior is similar to that
observed for the 0.9 km bounded cascade cloud. The
retrieval of the mean cloud top temperature also seems to
work fairly well for both the Gaussian process clouds.

6. Discussions and Perspectives

[79] In the present study, we tested the feasibility of
retrieving cloud parameters in case of inhomogeneous and
fractional clouds from multispectral and multiscale radiance
data, i.e., area-averaged radiance for two different scales of
observation pixel, i.e., (1 km � 1 km) pixel and (0.25 km �
0.25 km) pixel respectively. The inverse inhomogeneous
cloud with vertically uniform microphysical and optical
properties is defined with 6 clouds parameters: mean optical
thickness, mean effective radius, fractional cloud cover
parameter, inhomogeneity parameter of optical thickness
and inhomogeneity parameter of effective radius, and cloud
top temperature. The retrieval procedure is based on the
application of the mapping neural networks, and it com-
prises two distinct steps: the interpolation-correction step
and the cloud parameter retrieval step.
[80] The interpolation-correction step, though only tech-

nical, is one of the key issues for the development of the
cloud parameter retrieval. The results showed that the
interpolation and correction of radiance data could be
done with a good accuracy by using the mapping neural
networks. Some biases and dispersions observed in
retrieved cloud parameters may suggest that the angular
steps dq0 = 7.5�, djv = 15�, dqv = 7.5� we adopted for
the radiance simulation may be too coarse to realize the
interpolation-correction with good accuracy; for example,
Nakajima and Nakajima [1995] uses the angular steps of
dq0 = 5�, djv = 10�, dqv = 5� to prepare their look-up tables

for the plane-parallel homogeneous retrieval scheme. As for
the cloud parameter retrieval step itself, the present study
extends and improves the one investigated in FIG01 in the
more realistic conditions of the cloud parameter retrieval.
[81] We tested the whole retrieval procedure by preparing

special radiance data set for flat-top bounded cascade cloud
and flat-top and non-flat-top Gaussian process clouds. The
cloud parameters of these inhomogeneous clouds could be
retrieved with reasonable accuracy in spite of some discrep-
ancies and large dispersions. The retrieved mean and
standard deviation of optical thickness of the non-flat-top
Gaussian cloud exhibits some dispersion; this implies that
the variable cloud depth should be taken into account in the
future development of retrieval procedure.
[82] Nevertheless, the present results tend to support the

basic assumption that the exact type of ‘direct’ inhomoge-
neous cloud models is not important as far as the inhomo-
geneous clouds can be characterized by the first and second
order moments of sub-pixel scale variances of cloud param-
eters. This assumption implies that one can neglect the
effect of exact spatial distribution of fluctuations within an
observation pixel as first approximation. However, these
tests have been done only for the very limited conditions,
and we have to continue such tests with bounded cascade,
Gaussian process, and other clouds showing much larger
range of parameter variations.
[83] We tried to answer a rather limited question, of how

to use multiscale radiance data for the cloud parameter
retrieval, and showed that the use of (0.25 km � 0.25 km)
pixel radiance data could improve significantly the perform-
ance of the cloud parameter retrieval, especially the param-
eters associated with sub-pixel cloud inhomogeneity. This
shows that the use of radiance data other than usual area-
averaged multispectral radiance data may lead to the
retrieval of more pertinent cloud parameters in addition to
the usual optical thickness and effective radius. It should be
remarked that the area-averaged data tend to be strongly
correlated between them, and they provide only limited
independent information content on a cloud parameter to
retrieve. The measurement errors and/or approximations
may smear out completely such limited information.
[84] An observation pixel of 1 km, used in the present

study, is probably too small to neglect the effects of
neighbor pixels on the target observation pixel even for a
geometrical cloud depth of 0.3 km. It is noteworthy,
however, that the present retrieval procedure can be applied
to radiance data obtained for a larger observation pixel
without any modification as far as the new target and input
vectors share the same zone as those of 1 km pixel data in
the corresponding vector spaces.
[85] It is quite evident that the present radiance database is

too limited to cover the variability of cloud parameters of
natural inhomogeneous clouds, since it comprises only 4
cloud scenes of 6.4 km � 6.4 km domain with constant
geometrical cloud depth of 0.3 km and cloud base height of
0.5 km. Moreover, the cloud parameters in the present
database exhibit high correlation, which would not be prob-
ably present in the natural cloud data. Appendix A and
section 5 show that the assumption of the constant cloud
depth induces a bias in the retrieved cloud parameters. Some
of the discrepancies observed for Gaussian process cloud
may probably occur because its cloud parameters and
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corresponding radiance data are outside the corresponding
input vector space. These results raise many questions about
the adequacy between the cloud parameters to retrieve and
available radiance data, the statistical representativity of
training data set, and the strategy of MNN training. We will
discuss briefly some of these points which appear to be

critical for the development and improvement of the cloud
parameter retrieval of inhomogeneous clouds.
[86] The first point is relative to the question about the

adequacy between the cloud parameters to retrieve and
available radiance data, i.e., what kind of radiance data is
more pertinent for the planned cloud parameter retrieval,
how to get additional independent informative radiance
data, and how to define pertinent cloud parameters. The
present study showed that the present MNN retrieval
procedure which is based on the flat-top bounded cascade
clouds could not manage to retrieve accurate mean and
standard deviation of optical thickness. We have to test
whether including non-flat-top cloud radiance data into the
present training data set enables us to retrieve accurate mean
optical thickness and standard deviation in addition to an
‘effective’ geometrical cloud depths, even if there is no
guarantee that it is possible. On the contrary, the inclusion
of inhomogeneous clouds with variable cloud depth and
cloud base height requires necessarily additional data such
as oxygen absorption band and/or thermal radiance at
smaller pixels as input vector components. Otherwise, we
may be probably retrieving more cloud parameters than the
number of available radiance data.
[87] The second point, which is partly associated with the

statistical representativity of database and training strategy,
is to verify a basic implicit assumption that there is a one-to-
one correspondence between target vector and input vector.
The fact that all the necessary MNNs have been trained with
acceptable generalization performance does not guarantee
that multiple solution case does not occur for the inhomo-
geneous inverse cloud we have defined. To verify this
assumption requires a ‘target-input’ database with a fine
resolution both in target and input vector spaces; such
database would also improve significantly the performance
of MNNs. This also raises a question of how to choose an
MNN training data set: a random sampling from all avail-
able radiance data or a uniform sampling in the input vector
space. In the present study, we have opted to the random
sampling because of the limited size of our radiance data,
even if it is not a good solution to ensure a better
approximation in a wider region of input data space.
[88] The third point is relative of what happens when we

increase the number of desired cloud parameters and input
vector components. As the dimension of target and input
vector spaces increases, the main difficulty here is the
phenomenon known as the ‘curse of dimensionality’ which
implies the data sets of equal size become more and more
spread out in both the target and input vector spaces. To
realize a uniform sampling in the input space in such a
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Figure A1. Comparison of 0.544 mm radiance fields of
bounded cascade inhomogeneous clouds with a geometrical
cloud depth of 0.3 km but with two different cloud base
heights of 0.5 km and 1.5 km respectively. The results are
given for q0 = 30�, jv = 60� and qv = 0�, 15�, 30�, and 45�.
(a) Relative deviation of area-averaged radiance R0.544(hc =
1.5 km) with respect to R0.544(hc = 0.5 km) as a function of
mean optical thickness. (b) Relative deviation of area-
averaged radiance R0.544(hc = 1.5 km) with respect to
R0.544(hc = 0.5 km) as a function of fractional cloud cover.
(c) sR0.544(hc = 1.5 km) as a function of sR0.544(hc = 0.5 km).
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condition requires a radiance database much more extensive
than the database we have prepared. However, we do not
know expensive this radiance database should be; this
means that we have to train MNNs for cloud parameter
retrieval, and test and analyze them as we improve the
radiance database. Anyhow, this preparation of a rather

expensive database seems to be inescapable; we have to
work out an adequate strategy for radiance data simulation,
including the development of more efficient radiative trans-
fer codes. The second problem relative to the curse of
dimensionality is how we train more efficiently the MNNs
for the interpolation-correction and for the cloud parameter
retrieval. We need to consider two problems: the one is how
to avoid the training of an MNN for each incidence-viewing
configuration and the second is how to choose an MNN
with simpler structure. The first problem implies the devel-
opment of new neural network training technique, and the
second problem a better training strategy. What we have
done in the present study is to use all available radiance data
without eliminating any redundant data. The use of such
input vectors results in a more complex MNN with too
many hidden cells, while a better exploratory analysis
would lead to an MNN with much simpler structure.
[89] Finally, one of the important limitations of the

present study is that the radiance data used in the present
study are ‘monochromatic’ radiance, while real satellite
radiance data are weighted over a narrow band. Hence, to
apply the present retrieval procedure to real data, we have to
find a quick and precise method to convert narrow band
weighted radiance to monochromatic radiance without
doing new weighted radiance simulation. The quickest
way to do this conversion is to train the MNNs for this
data conversion even if such data conversion MNNs induce
additional dispersions in retrieved cloud parameters. We
have already trained and tested MNNs for such data
conversion for the plane-parallel homogenous clouds, and
intend to check the performance of these data conversion
MNNs when they are applied to inhomogeneous clouds.
Doing so would at least allow testing the performance of the
present retrieval procedure with real satellite radiance data.

Appendix A: Effects of Geometrical Cloud
Characteristics on Area-Averaged Radiance and
Standard Deviation of Radiance

[90] The radiance fields of inhomogeneous clouds with the
same horizontal distribution of inhomogeneity may vary with
the cloud base height and/or geometrical cloud depth. To
evaluate these effects on the area-averaged radiance and
standard deviation of radiance, we have simulated the radi-
ance fields of an identical inhomogeneous cloud scene by
changing the cloud base height and/or geometrical cloud
depth.
[91] Figure A1 are for inhomogeneous clouds with a

geometrical cloud depth of 0.3 km, but with two different
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Figure A2. Comparison of 0.544 mm radiance fields of
bounded cascade inhomogeneous clouds with a cloud base
height of 0.5 km, but with 2 different geometrical cloud
depths of 0.3 km and 0.9 km respectively. The results are
given for q0 = 45�, jv = 60�, and qv = 0�, 15�, 30�, 45�, and
60�. (a) Relative deviation of area-averaged radiance
R0.544(dc = 0.9 km) with respect to R0.544(dc = 0.3 km)as a
function of mean optical thickness. (b) Relative deviation of
area-averaged radiance R0.544(dc = 0.9 km) with respect to
R0.544(dc = 0.3 km) as a function of fractional cloud cover.
(c) sR0.544(dc = 0.9 km) as a fuction of sR0.544(dc = 0.3 km).
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cloud base heights hc of 0.5 km and 1.5 km respectively; the
domain cloud characteristics are (�td = 15, �rd = 20 mm, �f d =
0.6). The radiance fields were computed for a solar inci-
dence angle of 30� and a surface albedo of 0.05. The area-
averaged radiance R0.544 and standard deviation sR0.544
were computed for randomly sampled observation pixels
for different observation directions, and the results are
plotted in Figure A1 for an observation direction of jv =
60� and 4 different zenithal angles of qv = 0�, 15�, 30�, and
45�. The relative deviation of the area-averaged radiance
R0.544 is plotted as a function of �tp (Figure A1a) and as a
function of �f p (Figure A1b). The relative deviation of R0.544

is defined by rel.dev. = [R0.544(hc = 0.5 km) � R0.544(hc =
1.5 km)]/R0.544(hc = 0.5 km).
[92] The area-averaged radiance R0.544(hc = 1.5 km)

differs from R0.544(hc = 0.5 km) by less than 3% for most
of observation pixels with for moderate to large optical
thickness (10 < �tp), and the relative deviation decreases as
�tp increases from 10 to 40 (Figure A1a). The relative
deviation less than 5% corresponds to moderate to large
fractional cloud cover (0.4 < �f p < 1.0), and it decreases as �f p
increases from 0.4 to 1.0 (Figure A1b). For �tp < 10, the
relative deviation is predominantly positive, and goes up to
30% for very small values of �tp; these large relative
deviations correspond mostly to small fractional cloud
cover �f p < 0.4. This feature is quite different from a
quasi-symmetrical distribution of negative and positive
deviations we would have expected. This may be because
the solar radiation reflected from the underlying surface
becomes more uniform and consequently smaller when the
cloud base height is higher, which leads to the decrease of
radiance upwelling from the cloud layer.
[93] Figure A1c shows that sR0.544(hc = 1.5 km) does not

differ very much from sR0.544(hc = 0.5 km); the relative
deviation of sR0.544(hc = 1.5 km) should remains the same
order as those observed in Figure A1a. We also see that the
dispersion of sR0.544(hc = 1.5 km) for qv = 15� are larger
than for the other observation angles as in Figure A1a.
[94] Figures A2a, A2b, and A2c are the same as

Figure A1, but for inhomogeneous clouds with a cloud
base height of 0.5 km, but with two different geometrical
depths dc 0.3 km and 0.9 km respectively; the domain cloud
characteristics are (�td = 10, �rd = 12 mm, �f d = 0.8). The
radiance fields were computed for both the clouds for a
solar incidence angle of 45� and a surface albedo of 0.10.
[95] The relative deviation of R0.544(dc = 90 km) is much

larger than the relative deviation of R0.544(dc = 1.0 km)
observed in Figure A1. The area-averaged radiance
R0.544(dc = 0.9 km) differs from R0.544(dc = 0.3 km) by
less than 10% for (10 < �tp), and the relative deviation
decreases to less than 5% as �tp increases from 10 to 25
(Figure A2a). In Figure A2a, there is no apparent depen-
dency of the relative deviation on the observation zenithal
angle, except for small optical thickness �tp < 5. The
variation of relative deviation with the fractional cloud
cover represented in Figure A2b differs significantly from
that observed in Figure A1b. The relative deviation takes a
value larger than 5% for a fractional cloud cover as large as
0.8 even if it tends to decrease with the fractional cloud
cover (Figure A2b). There is a significant dependency of the
relative deviation on the observation zenithal angle for small
optical thickness.

[96] Figure A2c shows that sR0.544(dc = 0.9 km) differ
significantly from sR0.544(dc = 0.3 km) and the former is
frequently much smaller than the later. This underestimation
is more evident for (qv = 45� and 60�) than (qv = 0� and 15�).
Indeed, when the geometrical cloud depth increases while
the horizontal distribution of cloudy and clear sky area are
being kept unchanged, the aspect ratio of cloudy and clear
sky area defined as (horizontal scale/vertical scale)
decreases even if its fractional cloud cover viewed from
the nadir remains identical. The direct solar radiation,
especially for oblique solar incidence, has more chance to
encounter cloud columns for geometrically deep clouds than
for geometrically shallow clouds; this is also true for
photons scattered by cloud columns, which tend to be more
frequently intercepted by surrounding cloud columns. Con-
sequently, inhomogeneous clouds with larger geometrical
cloud depth tend to behave radiatively less inhomogeneous
than inhomogeneous clouds with smaller geometrical cloud
depth even if they have both the same horizontal distribu-
tion of cloud inhomogeneity and the same mean cloud
domain optical thickness and effective radius.
[97] We may conclude that the variation of the cloud base

height influences only slightly the area-average radiance
R0.544 and standard deviation sR0.544 for moderate to large
optical thickness and for moderate to large fractional cloud
cover, while the variation of the geometrical cloud depth has
much larger effect on the area-average radiance R0.544 and
standard deviation sR0.544 even for moderate to large optical
thickness and for moderate to large fractional cloud cover.
Consequently, the cloud parameters retrieved with the pres-
ent retrieval procedure may show some bias when the
retrieval procedure is applied for inhomogeneous clouds
with geometrical cloud depths much larger than 0.3 km
because the present MNNs are trained with our present
radiance database prepared with a constant geometrical
cloud depth of 0.3 km.
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