
nt 103 (2006) 97–114
www.elsevier.com/locate/rse
Remote Sensing of Environme
Tree cover and height estimation in the Fennoscandian tundra–taiga
transition zone using multiangular MISR data

Janne Heiskanen ⁎

Department of Geography, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland

Received 3 November 2005; received in revised form 28 March 2006; accepted 31 March 2006
Abstract

The tundra–taiga transition zone stretches around the northern hemisphere separating boreal forest to the south from treeless tundra to the
north. Tree cover and height are important variables to characterize this vegetation transition. Accurate continuous fields of tree cover and height
would enable the delineation of the forest extent according to different criterion and provide useful data for change detection of this climatically
sensitive ecotone. This study examined if multiangular remote sensing data has potential to improve the accuracy of the tree cover and height
estimates in relation to nadir-view data. The satellite data consisted of Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m and 1.1 km
resolutions. The study area was located in the Fennoscandian tundra–taiga transition zone, in northernmost Finland. The continuous fields of tree
cover and height were estimated using neural networks, which were trained and assessed by high-resolution biotope inventory data. The spectral–
angular data together produced lower estimation errors than single band nadir, multispectral nadir or single band multiangular data alone. RMSE
of the tree cover estimates reduced from 7.8% (relative RMSE 67.4%) to 6.5% (56.1%) at 275 m resolution, and from 5.4% (49.2%) to 4.1%
(36.9%) at 1.1 km resolution, when multispectral nadir data were used together with multiangular data. RMSE of the tree height estimates reduced
from 2.3 m (44.3%) to 2.0 m (37.6%) and from 1.8 m (35.4%) to 1.3 m (25.4%), respectively. The largest estimation errors occurred in mires and
in areas of dense shrub cover, but the use of multiangular data also reduced estimation errors in these areas. The results suggest that directional
information has potential to improve the tree cover and height estimates, and hence the accuracy of the land cover change detection in the tundra–
taiga transition zone.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The tundra–taiga interface stretches around the northern
hemisphere separating boreal forest to the south from treeless
tundra to the north (Callaghan et al., 2002b). Instead of a
clearly defined forest line, it is a transition zone characterized
by latitudinal gradients of tree cover, density, height, age-class
structure and growth form. These gradients are associated with
gradients in climate, biodiversity, land–atmosphere interaction,
snow dynamics, and land use. Locally, the gradients are
modified by topography and, for example, by the presence of
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rivers and mires (Callaghan et al., 2002b). If global warming
and climate change continue as predicted, they are likely to
have a major impact on vegetation distribution and structure in
the tundra–taiga transition zone (Skre et al., 2002). This will
have significant effects on ecosystem functioning and
biodiversity, and also possible feedback effects on climate
(Harding et al., 2002). The response of vegetation cover to the
climate change is likely to show local variability depending on
the local environmental conditions (Skre et al., 2002). Forest
fires, insect outbreaks and human activities, like reindeer
herding, industry and land use changes, make the land cover
change even more complex (Käyhkö & Pellikka, 1994;
Seppälä & Rastas, 1980; Skre et al., 2002; Vlassova, 2002).

Standardised and more precise land cover characterization
in the tundra–taiga boundary is necessary for monitoring
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natural and human induced land cover changes in the future
(Callaghan et al., 2002a,b). Remote sensing offers probably
the only cost-effective means for monitoring the regional
variability in land cover change over the vast tundra–taiga
transition zone (Rees et al., 2002; Stow et al., 2004). Wide-
swath, low spatial resolution instruments like NOAA
AVHRR, Terra/Aqua MODIS and SPOT VEGETATION
provide data that allow land cover characterization over the
whole transition zone regularly, for example, annually.
Relatively large parts of the transition zone have also been
covered by high resolution image mosaics, for example, by
Landsat TM images (e.g., Virtanen et al., 2004). However,
high temporal resolution is essential, if regular monitoring is
pursued in the high latitudes, where data acquisition is
hindered by frequent cloud cover and the short growing
season (Rees et al., 2002; Stow et al., 2004). High spatial
resolution airborne and spaceborne instruments enable more
detailed but less frequent analyses of land cover change, and
calibration and validation of lower resolution observations
(Stow et al., 2004).

The tundra–taiga transition zone has been mapped in
several global and continental scale land cover classifications
at 1 km spatial resolution (Bartalev et al., 2003; Bartholomé
& Belward, 2005; Hansen et al., 2000; Loveland et al., 2000).
In conventional land cover maps, every pixel is labelled to a
single land cover type. The classification of low resolution
pixels to a single land cover type generally results in an
underestimation of the less abundant and more fragmented
land cover classes (Braswell et al., 2003; Virtanen et al.,
2004). The internal heterogeneity of discrete classes is also
obscured (DeFries et al., 2000a, 2000b). An alternative is to
Fig. 1. The location of the study area and vegetation zones after Oksanen and Virta
4=mixed coniferous forest. The map also shows the width of the MISR orbit.
map the sub-pixel fractions of different land cover classes, or
to describe land cover as continuous fields (e.g., Fernandes et
al., 2004). This means either mapping the proportional covers
of land cover types, or estimation of surfaces of land cover
describing variables (e.g., percent tree cover). In principle,
these approaches provide methods for detecting spatial
gradients and temporal changes in land cover, and methods
for unbiased estimation of land cover over large areas with
low spatial resolution sensors (DeFries et al., 2000a;
Fernandes et al., 2004). Continuous fields of land cover
attributes are also independent of different classification
legends (DeFries et al., 2000b). A number of methods exist
for deriving sub-pixel land cover, for example, linear spectral
unmixing, regression analysis and neural networks (Boyd et
al., 2002; Fernandes et al., 2004; Hansen et al., 2003;
Schwarz & Zimmermann, 2005).

The tundra–taiga transition zone is characterized by the
changing proportions of the tundra and taiga vegetation.
However, apart from the global continuous fields of vegetation
products (DeFries et al., 1999, 2000a, 2000b; Hansen et al.,
2003), only a very few studies have used the sub-pixel methods
to characterize the land cover of this ecotone. Tree cover and
height have been used in the global land cover classification
legends to define forest classes (e.g., Loveland et al., 2000).
Accurately mapped continuous fields of the tree cover and tree
height would enable the delineation of the forest extent
according to variable criterion. It would also be desirable to
map separately coniferous and broadleaved tree cover, because
climate change may affect the tree species composition, and also
because different species are likely to have a different response
to climate change (Skre et al., 2002).
nen (1995): 1= treeless heath, 2=birch woodland and forest, 3=pine forest and



Fig. 2. (a) The spatial variability of coniferous tree cover (%), (b) broadleaved tree cover (%), (c) shrub cover (%), and (d) fractional cover of mire (%) in the study area
at 275 m resolution.
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Significant differences have been observed between the
global land cover maps in the transition zones of the major
biomes (Hansen & Reed, 2000). Accurate mapping of the
tundra–taiga transition zone has been hampered by the spectral
confusion between forest and non-forest vegetation (Rees et al.,
2002). The effect of the undergrowth vegetation on the satellite
signal is also pronounced in areas of low tree cover (DeFries et
al., 2000b). In the higher resolution studies, the classification
errors have occurred typically in the sparse forests and heaths
with particularly dense undergrowth shrub cover (Käyhkö &
Pellikka, 1994; Seppälä & Rastas, 1980; Virtanen et al., 2004).
Also mires, which are abundant in the tundra–taiga transition
zone, are often misinterpreted as forest (Häme et al., 1997;
Kalliola & Syrjänen, 1991; Tomppo et al., 2002). These sources
of error are likely to reduce the classification accuracy and bias
the continuous fields estimates in the tundra–taiga transition
zone.

Bidirectional reflectance distribution function (BRDF)
describes the dependence of the satellite observed reflectance
on solar illumination and sensor viewing angles. BRDF of
vegetation is typically highly anisotropic, determined by the
optical properties of canopy components, and canopy- and
landscape-level structural characteristics (Asner et al., 1998).
Most of the remote sensing studies concerned with land cover
mapping have employed the spectral and temporal information
of the optical satellite data. However, several studies (Abuelga-
sim et al., 1996; Barnsley et al., 1997; Bicheron et al., 1997;
Diner et al., 1999) have suggested that directional information
gathered by the multiangular sensors (i.e. sensors with multiple
view angles) could separate land cover types with similar
spectral reflectances at nadir. The significant variability in
structural properties of vegetation in the tundra–taiga transition
zone implies that multiangular data could potentially increase
the accuracy of land cover mapping in this transition zone.
Recently, near-simultaneous multiangular observations have
also become available, providing improved sampling of land
surface BRDF (Asner et al., 1998; Diner et al., 1998).

The objective of this study was to examine the potential of
multiangular remote sensing data to improve the continuous
fields of tree cover and height estimates in the tundra–taiga
transition zone in northernmost Finland. The remote sensing
data consisted of Multi-angle Imaging SpectroRadiometer
(MISR) data at 275 m and 1.1 km spatial resolutions. MISR
data was employed to examine the sensitivity of multiangular
reflectance to the variability in tree cover and height, and to
study how the accuracy of the tree cover and height estimates
depends on the utilized spectral–angular band combination. The
estimation accuracy was also studied in relation to the shrub
cover and fractional cover of mire.

2. Material and methods

2.1. Study area

The study area was a 215-km-long and 60-km-wide transect
located in the Fennoscandian tundra–taiga transition zone, in
northernmost Finland (Fig. 1). The study area belongs to the
northern boreal and hemiarctic vegetation zones (Heikkinen,
2005; Oksanen & Virtanen, 1995). The area lies south of the
latitudinal tree line of mountain birch (Betula pubescens ssp.



Fig. 3. A polar plot showing the mean viewing angles of the MISR cameras and
Sun position during the data acquisition. The circular axis represents the azimuth
angle and the radial axis represents the zenith angle.

Fig. 4. Multispectral and -angular RGB composites of the MISR Level 1B2
Terrain data at 275 m resolution. Composites consist of NIR, red and green
bands from nadir viewing camera (a) and red bands from 60° forward, nadir and
60° aftward viewing cameras (b). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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czerepanovii), but the tree lines of Scots pine (Pinus sylvestris)
and Norway spruce (Picea abies) transect the area (Heikkinen,
2005). The area north of the pine forests is characterized by
treeless heaths, mountain birch woodlands and forests, and
sporadic pine stands. The southern part is characterized by
pine forests and mixed coniferous forests (Fig. 1). Palsa and
orohemiarctic mires are typical in the northern part and aapa
mires in the southern part of the study area (Ruuhijärvi, 1988).
Dwarf birch (B. nana) is a common shrub not only in the
undergrowth of mountain birch forests but also in the heaths
and mires. The herbivorous larvae of the geometrid moth
Epirrita autumnata have defoliated the mountain birch
woodlands and forests over large areas from time to time
(Seppälä & Rastas, 1980). The topography of the study area is
characterised by gently sloping fells and steep slopes in the
river valleys, and elevation ranges from approximately 100 to
600 m a.s.l.

2.2. Biotope inventory data

The biotopes of the nature reserves, wilderness areas and
national parks of northernmost Finland have been invento-
ried between 1996 and 1999 (Sihvo, 2001, 2002). According
to the definition, biotope is an area with uniform soil, tree
stand and human impact (Eeronheimo, 1996). The biotope
map has been delineated from colour-infrared aerial photo-
graphs using interpretation keys collected in the field. The
basic forest inventory parameters have also been interpreted.
The scale of the inventory was 1:20000 and the smallest
mapping unit 1 ha. The biotope data has been stored in a
GIS-database in vector format. The tree cover and height
were used as target variables. The tree cover has been
defined as the projected cover of the predominant tree layer
in percentage, and tree height as the mean of the hundred
thickest trees in a hectare in metres (Eeronheimo, 1996). The
coniferous and broadleaved tree covers were also derived by
using the species-specific fractions of the total tree cover.
The shrub cover, i.e. the projected coverage of shrubs in
percentage (Eeronheimo, 1996), and mire and water masks
were derived as ancillary data. A mire mask included all the
mire biotopes.

The spatial variability of the coniferous and broadleaved tree
cover, shrub cover and fractional cover of mire in the study area
are presented in Fig. 2. The private lands have not been
inventoried and hence the data did not cover the entire study
area.

2.3. Satellite data

The multiangular satellite data were provided by MISR,
which is onboard the Earth Observing System (EOS) satellite
Terra (Diner et al., 1998, 2002). MISR has nine cameras; four
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Table 1
Descriptive statistics of the reference data at 275 m and 1.1 km resolution

Variable Resolution n Range Mean Median S.D.

Tree cover (%) 275 m 123512 0.0–79.1 11.5 8.5 11.4
1.1 km
(TOA BRF)

6998 0.0–47.9 11.0 9.6 9.3

1.1 km
(surface BRF)

5760 0.0–47.9 11.6 10.8 9.6

Coniferous
tree cover (%)

275 m 123512 0.0–50.0 3.6 0.0 7.0
1.1 km
(TOA BRF)

6998 0.0–38.4 3.4 0.0 6.0

1.1 km
(surface BRF)

5760 0.0–38.4 4.0 0.0 6.3

Broadleaved tree
cover (%)

275 m 123512 0.0–76.8 7.7 4.4 9.0
1.1 km
(TOA BRF)

6998 0.0–46.6 7.4 5.9 6.8

1.1 km
(surface BRF)

5760 0.0–46.6 7.4 5.8 6.9

Tree
height (m)

275 m 123512 0.0–17.8 5.3 4.3 3.7
1.1 km
(TOA BRF)

6998 0.0–16.0 5.1 4.3 3.3

1.1 km
(surface BRF)

5760 0.0–16.0 5.4 4.4 3.5

Shrub
cover (%)

275 m 123512 0.0–100.0 6.7 3.7 8.2
1.1 km
(TOA BRF)

6998 0.0–51.7 6.7 5.3 6.0

1.1 km
(surface BRF)

5760 0.0–51.7 6.6 4.9 6.2

Fractional cover
of mire (%)

275 m 123512 0.0–100.0 21.2 6.6 28.2
1.1 km
(TOA BRF)

6998 0.0–100.0 21.2 16.1 19.4

1.1 km
(surface BRF)

5760 0.0–100.0 18.9 14.0 18.2
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point to the forward direction (entitled Af, Bf, Cf, and Df in the
order of increasing off-nadir angle), one points towards the
nadir (An) and four point to the aftward direction (Aa, Ba, Ca,
Da). The nominal view angles of the cameras are 0°, ±26.1°,
±45.6°, ±60.0° and ±70.5°. Each of the nine cameras has four
spectral bands: blue (centered at 446 nm; bandwidth 42 nm),
green (558 nm; 29 nm), red (672 nm; 22 nm) and near infrared
(NIR, 866 nm; 40 nm) (Diner et al., 1998). MISR data are
acquired at a spatial resolution of 275 m, but in the global mode
the original resolution is preserved only for the red bands and
nadir camera, the other bands being averaged to a 1.1 km
resolution.

MISR data employed in this study were acquired on 29
July 2000 (path 193 and orbit 3263). The acquisition date
corresponds approximately to the time of maximum birch leaf
size in the study area. Defoliation of the birch leaves by E.
autumnata is not known to have occurred in the study area in
summer 2000. Fig. 3 shows the mean view zenith and
azimuth angles of the MISR cameras during the data
acquisition. The scattering angle, i.e. the angle between the
illumination and observation directions defined by the zenith
and azimuth angles, was the smallest for Ba and Ca cameras,
21° and 24°, respectively.

A set of standard MISR data products are available,
ranging from the raw instrument data to the calibrated and
geolocated radiances, and geophysical retrievals of atmo-
spheric and surface properties (Bothwell et al., 2002). MISR
Level 1B2 Terrain data [MI1B2T, terrain projected top-of-
atmosphere (TOA) radiance] and MISR Level 2 Land
Surface data [MIL2ASLS, surface bidirectional reflectance
factor (BRF)] were used here. The Land Surface data is
only available at 1.1 km resolution. The data were provided
by the Atmospheric Sciences Data Center (ASDC) at NASA
Langley Research Center and ordered from the EOS Data
Gateway.1 TOA radiances were converted into TOA BRFs
using the exo-atmospheric irradiances, Earth–Sun distance
and solar zenith angle accompanying the data.

Fig. 4 shows multispectral and -angular composites of MISR
L1B2 Terrain imagery over the study area.

2.4. Compilation of the statistical data set

The spatial resolution of the MISR data determined that the
target variables were estimated at 275 m and 1.1 km resolutions.
All the biotope inventory data were rasterised to a 15 m
resolution and projected to the Space Oblique Mercator (SOM)
projection corresponding to the MISR data. Two grids were
created matching the 275 m and 1.1 km MISR pixels. The mean
tree cover (also separate coniferous and broadleaved tree cover)
and tree height were calculated for the grid cells. Also, the mean
shrub cover and fractional covers of water and mire were
calculated. The cells that were not covered by the biotope
inventory data completely, or that had a fractional cover of
water over 30% were excluded.

The input variables included all the bands from the nadir
camera and red bands from all the cameras at 275 m
resolution (TOA BRF), and all the bands from all the
cameras at 1.1 km resolution (TOA and surface BRF).
However, the data from Da camera was not used due to the
obvious errors in the co-registration with other cameras. For
the other cameras, the mean geolocation error has been
reported to be below 60 m (standard deviations ranging
from 100 to 300 m) and coregistration of the cameras within
one pixel uncertainty (Diner et al., 2002; Jovanovic et al.,
2002). After the exclusion of Da camera, there were 11
bands at 275 m resolution, and 32 bands at 1.1 km
resolution. Some pixels were excluded from the Level 1B2
Terrain data because they were obscured by topography in
the extreme view angles (Jovanovic et al., 1998). The Level
2 Land Surface data have been atmospherically corrected
using atmospheric parameters at 17.6×17.6 km2 regions.
Data were missing for some regions reducing the number of
observations in surface BRF data set.

The descriptive statistics of the reference data at 275 m and
1.1 km resolution are shown in Table 1. The total number of
pixels was 123512 at 275 m resolution, and 6998 (TOA BRF)
and 5760 (surface BRF) at 1.1 km resolution. Half of all the data
were allocated to the training set and half to the testing set by
random sampling.

http://edcimswww.cr.usgs.gov/pub/imswelcome/


Fig. 5. The mean blue, green, red and NIR top-of-atmosphere (TOA) and surface BRF in the tree cover classes and MISR viewing angles (−70.5° to 60.0°). The
negative angles correspond to the forward scatter direction (view azimuth 190°) and positive angles to the backward scattering direction (view azimuth 10°). The solar
zenith angle was 51° at time of acquisition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.5. Data analysis

The mean TOA and surface BRFs were calculated for several
tree cover and height classes before the statistical analysis. This
was done in order to visualize the dependence of the BRFs on
the view zenith angle, and tree cover and height in MISR
spectral bands.

The tree cover and height were estimated by neural networks
using different combinations of MISR bands. Neural networks
are general-purpose computing tools that can solve complex
nonlinear problems (Bishop, 1995). The major attraction of
neural networks is that, unlike conventional statistical methods,
they offer a powerful means for analysing complex data sets
without making assumptions about the data distribution (Boyd
et al., 2002). Therefore, neural networks have been used
commonly for estimation of forest variables using remote
sensing data (Boyd et al., 2002; Fernandes et al., 2004).

Feed-forward multilayer neural networks were applied in
this study. Various architectures having one and two hidden
layers with variable number of neurons (from 5 to 40 in steps
of 5) were investigated separately for all the target variables.
The models producing the most accurate estimates were
selected. Hyperbolic tangent activation functions were used in
the hidden nodes. The Network training was performed using
the Levenberg–Marquardt algorithm (Bishop, 1995). Early
stopping was adopted in order to avoid overfitting of the
models (Bishop, 1995). The training set, i.e. 50% of all the
observations, was partitioned randomly to the training data
(90%) and to the validation data (10%), and the training was
stopped at the point of minimum validation set error.

2.6. Model assessment

The trained networks were used in the forward mode to
estimate the target variables for the testing data set. The
reliability statistics included the root mean square error
(RMSE), relative RMSE (RMSEr), bias (Bias) and relative
bias (Biasr):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyî−yiÞ2

n

vuuut
ð1Þ

RMSEr ¼ RMSE
ȳ

� 100 ð2Þ



Fig. 6. The mean blue, green, red and NIR top-of-atmosphere (TOA) and surface BRF in the tree height classes and MISR viewing angles (−70.5° to 60.0°). See Fig. 5
for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Bias ¼

Xn
i¼1

ðyî−yiÞ

n
ð3Þ

Biasr ¼ Bias
ȳ

� 100 ð4Þ

where ŷi is the estimate, yi is the observed value, ȳ is the mean of
the observations and n is the number of the observations
(Hyvönen, 2002). The statistical significance of the bias was
tested using the t-test.
3. Results

3.1. BRF of tree cover and height classes

The mean TOA and surface BRFs differ considerably in
the shorter wavelength blue, green and red bands but very
little in the NIR bands (Figs. 5 and 6). The atmospheric
correction reduces the BRF particularly in the largest off-nadir
view angles. The TOA BRF increases rapidly with increasing
view zenith angle, being higher in the backscatter direction
than in the corresponding angles in the forward scatter
direction. The surface BRFs are flattened, especially in the
forward scatter direction. The BRF is lowest in 26.1° forward
viewing camera and highest in 45.6° and 60.0° aftward
viewing cameras, i.e. in the smallest scattering angles. The
NIR bands show the largest range of surface BRF and also
the strongest forward scatter. The forward scatter is also
slightly increasing towards the extreme forward viewing
direction.

The differences between the tree cover and height classes are
approximately equal both in the TOA and surface BRF data. In
the blue, green and red bands, the mean BRFs are systematically
decreasing as tree cover and height increase. The differences
between the tree cover classes are greatest in the backscatter
direction in the red bands. The largest tree cover classes are
distinguishable, but the two largest tree height classes have very
similar BRFs in the red bands. The differences between the
classes are particularly small in the blue and green bands. In the
NIR bands, the highest and lowest tree cover and height classes
have very similar BRFs. However, the largest three classes have
clear differences.

3.2. Tree cover and height estimation

All the target variables were estimated by neural networks
having one hidden layer. The number of hidden units in the



Table 2
The accuracy of the tree cover and height estimates at 275 m spatial resolution
using different spectral–angular combinations of MISR bands (n=61756)

Target
variable

View-angle a

(spectral
band b)

Number
of bands

RMSE RMSEr

(%)
Bias Biasr

(%)
r

Tree
cover (%)

Nadir (blue) 1 8.98 77.6 −0.10 −0.8 0.61
Nadir (green) 1 9.24 79.9 −0.09 −0.8 0.58
Nadir (red) 1 8.41 72.7 −0.08 −0.7 0.67
Nadir (NIR) 1 11.15 96.4 −0.09 −0.8 0.20
Nadir (all) 4 7.80 67.4 −0.11 −1.0 0.73
All (red) 8 6.85 59.2 −0.03 −0.3 0.80
Nadir (all),
All (red)

11 6.49 56.1 −0.05 −0.4 0.82

Coniferous
tree cover
(%)

Nadir (blue) 1 6.45 178.3 0.01 0.4 0.37
Nadir (green) 1 5.91 163.5 0.00 −0.1 0.52
Nadir (red) 1 6.20 171.5 0.00 −0.1 0.45
Nadir (NIR) 1 6.47 179.0 −0.02 −0.7 0.36
Nadir (all) 4 4.71 130.4 0.10 2.8 0.73
All (red) 8 4.91 135.6 0.05 1.3 0.71
Nadir (all),
All (red)

11 3.85 106.5 −0.02 −0.6 0.83

Broadleaved
tree cover
(%)

Nadir (blue) 1 7.98 103.4 −0.10 −1.3 0.47
Nadir (green) 1 8.29 107.4 −0.12 −1.5 0.40
Nadir (red) 1 7.90 102.3 −0.10 −1.2 0.49
Nadir (NIR) 1 8.52 110.4 −0.08 −1.1 0.34
Nadir (all) 4 7.18 93.0 −0.06 −0.7 0.61
All (red) 8 6.87 89.0 −0.09 −1.2 0.65
Nadir (all),
All (red)

11 6.43 83.2 −0.06 −0.8 0.71

Tree
height (m)

Nadir (blue) 1 2.99 56.9 0.01 0.3 0.57
Nadir (green) 1 2.90 55.1 0.00 0.0 0.61
Nadir (red) 1 2.81 53.3 0.00 0.0 0.64
Nadir (NIR) 1 3.58 68.0 0.00 −0.1 0.19
Nadir (all) 4 2.33 44.3 0.00 0.0 0.77
All (red) 8 2.29 43.5 0.02 0.4 0.78
Nadir (all),
All (red)

11 1.98 37.6 0.01 0.2 0.84

Biases shown in bold are statistically significant (p<0.05). The table also shows
correlations of the observed and estimated values (r).
a Nadir=An camera; all=Df, Cf, Bf, Af, An, Aa, Ba and Ca cameras.
b Blue=blue band; green=green band; red=red band; NIR=near infrared

band; all=blue, green, red and NIR bands.

Table 3
The accuracy of the tree cover and height estimates at 1.1 km spatial resolution
using different spectral–angular combinations of MISR bands (n=3499)

Variable View-angle a

(spectral
band b)

Number
of bands

RMSE RMSEr

(%)
Bias Biasr

(%)
r

Tree
cover (%)

Nadir (blue) 1 6.63 60.1 0.02 0.2 0.69
Nadir (green) 1 7.17 65.0 −0.06 −0.5 0.63
Nadir (red) 1 6.07 55.0 0.07 0.6 0.75
Nadir (NIR) 1 8.87 80.5 0.08 0.7 0.27
Nadir (all) 4 5.42 49.2 −0.14 −1.3 0.81
All (blue) 8 5.74 52.0 −0.26 −2.4 0.78
All (green) 8 5.21 47.2 −0.09 −0.8 0.83
All (red) 8 4.62 41.9 0.05 0.4 0.87
All (NIR) 8 5.80 52.6 −0.21 −1.9 0.78
Nadir (all),
All (red)

11 4.27 38.7 −0.07 −0.6 0.89

All (all) 32 4.06 36.9 −0.11 −1.0 0.90
Coniferous
tree cover
(%)

Nadir (blue) 1 5.22 161.1 0.17 5.4 0.42
Nadir (green) 1 4.87 150.5 0.12 3.7 0.53
Nadir (red) 1 4.93 152.2 0.27 8.3 0.52
Nadir (NIR) 1 5.48 169.1 0.20 6.2 0.31
Nadir (all) 4 3.59 110.9 0.09 2.8 0.78
All (blue) 8 4.29 132.5 0.14 4.4 0.67
All (green) 8 3.42 105.7 0.25 7.7 0.81
All (red) 8 3.82 118.0 0.27 8.3 0.75
All (NIR) 8 3.10 95.7 −0.04 −1.2 0.84
Nadir (all),
All (red)

11 2.55 78.8 0.06 1.8 0.90

All (all) 32 2.23 68.9 0.07 2.3 0.92
Broadleaved
tree cover
(%)

Nadir (blue) 1 5.73 76.1 −0.25 −3.3 0.56
Nadir (green) 1 6.04 80.2 −0.19 −2.6 0.48
Nadir (red) 1 5.69 75.5 −0.28 −3.8 0.57
Nadir (NIR) 1 6.13 81.3 −0.15 −1.9 0.46
Nadir (all) 4 4.86 64.6 −0.08 −1.0 0.71
All (blue) 8 5.38 71.4 −0.19 −2.5 0.63
All (green) 8 5.25 69.6 −0.18 −2.4 0.65
All (red) 8 4.81 63.9 −0.24 −3.2 0.72
All (NIR) 8 5.33 70.7 −0.26 −3.4 0.64
Nadir (all),
All (red)

11 4.45 59.1 −0.16 −2.2 0.76

All (all) 32 3.96 52.5 −0.10 −1.3 0.82
Tree height
(m)

Nadir (blue) 1 2.50 49.1 0.05 1.1 0.62
Nadir (green) 1 2.51 49.3 0.00 0.0 0.62
Nadir (red) 1 2.28 44.7 0.03 0.6 0.70
Nadir (NIR) 1 3.16 61.9 0.08 1.7 0.17
Nadir (all) 4 1.80 35.4 −0.02 −0.4 0.83
All (blue) 8 1.96 38.5 0.01 0.1 0.79
All (green) 8 1.74 34.1 0.00 −0.1 0.84
All (red) 8 1.80 35.2 0.06 1.2 0.83
All (NIR) 8 1.81 35.6 −0.07 −1.3 0.83
Nadir (all),
All (red)

11 1.40 27.5 0.00 0.1 0.90

All (all) 32 1.29 25.4 −0.01 −0.2 0.91

The variables were estimated by TOA BRF data. Biases shown in bold are
statistically significant (p<0.05). The table also shows correlations of the
observed and estimated values (r).
a Nadir=An camera; all=Df, Cf, Bf, Af, An, Aa, Ba and Ca cameras.
b Blue=blue band; green=green band; red=red band; NIR=near infrared

band; all=blue, green, red and NIR bands.
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hidden layer varied from 10 to 35. The number of hidden units
increased as the number of input bands increased. Less than 100
iterations were necessary to train all the networks.

The accuracy statistics of the tree cover and height estimates
at 275 m resolution are presented in Table 2. The multispectral
nadir bands and multiangular red data together produced
consistently the smallest estimation errors and the highest
correlations between the observed and predicted values. The
smallest RMSE was 6.49% for tree cover and 1.98 m for tree
height. RMSEr were smaller for tree height than for tree cover,
the smallest errors being 37.6% and 56.1%, respectively. The
division of tree cover into coniferous and broadleaved tree cover
decreased RMSE but increased RMSEr considerably. The
smallest RMSE (RMSEr) was 3.85% (106.5%) for coniferous
and 6.43% (83.2%) for broadleaved tree cover. The biases of the
most accurate tree cover and height estimates were small and
insignificant. Some of the coniferous and broadleaved tree cover
estimates had larger and significant biases.
The surface BRF data produced consistently lower accuracy
for all the target variables than TOA BRF data. This is most
probably due to a quilted pattern in the surface BRF data, which



Fig. 7. Estimated versus observed tree cover (%) at 275 m resolution (on the left) and at 1.1 km resolution (on the right). Input variables included all nadir bands (a),
multiangular red bands (b) and all the bands (c).
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is a result of 17.6×17.6 km2 regions used in the atmospheric
correction (Diner et al., 2005). Because of artefacts in surface
BRF data, the accuracy statistics are presented only for the TOA
data (Table 3).
The tree cover and height estimates were more accurate at
1.1 km resolution than at 275 m resolution. The smallest
estimation errors and the highest correlation between the
observed and predicted values were observed when all the



Fig. 8. Estimated versus observed tree height (m). See Fig. 7 for details.
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spectral–angular data were used. The smallest RMSE (RMSEr)
was 4.06% (36.9%) for tree cover and 1.29 m (25.4%) for tree
height, both predicted by all the 32 bands. Similar to the 275 m
data, the division of the tree cover into the coniferous and
broadleaved tree cover decreased RMSE (2.23% and 3.96%) but
increased RMSEr (68.9% and 52.6%). The biases of the most
accurate estimates were small and insignificant at 1.1 km
resolution.

The multiangular data produced more accurate estimates
than single nadir bands. At 275 m resolution, those bands



Fig. 9. Observed (a) and estimated (b) tree cover (%) at 275 m resolution. The
tree cover was estimated using nadir and multiangular red bands.

Fig. 10. Observed (a) and estimated (b) tree cover (%) at 1.1 km resolution. The
tree cover was estimated using all the bands.
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produced also more accurate estimates than multispectral nadir
data for all the target variables except coniferous tree cover. At
1.1 km resolution, the multiangular red data were the best
predictor of tree cover, but the green data were the best predictor
of tree height. The multispectral nadir data produced more
accurate estimates of tree cover and height than multiangular
blue and NIR data. The multiangular NIR and green data were
more accurate predictor of the coniferous tree cover than nadir
bands, and multiangular red data better predictor of broadleaved
tree cover than nadir bands.

The tree cover and height estimates are plotted against the
observed values in Figs. 7 and 8. The scattering in the plots is
relatively small at 1.1 km resolution in comparison to the 275 m
resolution. Furthermore, the scattering is reduced when the
combined nadir and multiangular data are used instead of either
nadir or single band multiangular data. The tree cover is also
underestimated in the largest tree cover values corresponding to
the slightly negative biases (Tables 2 and 3). Some underesti-
mation also occurs in the tree height estimation, although the
effect is smaller.

The observed and estimated tree cover has been mapped in
Figs. 9 and 10, at 275 m and 1.1 km resolutions, and tree height
in Figs. 11 and 12, respectively. The variables were estimated
using all the spectral–angular data, because it produced the
smallest estimation errors. The spatial patterns of observed and
estimated tree cover and height are consistent, particularly at
1.1 km resolution. The largest underestimates of the tree cover
and height occur in the areas of high tree cover, and in the
coniferous forests in the southern part of the study area. The
underestimation is particularly clear at 275 m resolution (Figs. 9
and 11). On the other hand, the tree cover and height are
overestimated in the areas of low tree cover, particularly in the
areas of dense shrub cover and in the mires. The overestimation
occurs particularly in the middle and in the northern and parts of
the study area.

3.3. Effect of shrub cover and mires to the estimation accuracy

The dependence of the estimation errors on shrub cover and
fractional cover of mire was also examined. RMSEr and Biasr of
the tree cover estimates are presented in relation to the shrub
cover and fractional cover of mire in Figs. 13 and 14. At 275 m
resolution, RMSEr of the tree cover increases as the shrub cover
increases, but this is not observed at 1.1 km resolution.
However, Biasr becomes larger as shrub cover increases.
RMSEr and Biasr increase consistently when fractional cover
of mire in the pixel becomes larger than 50%. The Biasr is also
negative when shrub cover and fractional cover of mire are
small. The same statistics are presented for tree height estimates
in Figs. 15 and 16. RMSEr of the tree height estimates does not
change or even reduce a little as shrub cover increases. Similarly
to the tree cover estimates, RMSEr increase rapidly as the
fractional cover of mire increase over 50% at 275 m resolution.
However, RMSEr changes only a little between the classes at
1.1 km resolution. Biasr is negative when shrub cover and
fractional cover of mire are small, but grows considerably as
shrub cover and fractional cover of mire increase. However, the
change in the Biasr is not as consistent as in the tree cover
estimation.



Fig. 12. Observed (a) and estimated (b) tree height (m) at 1.1 km resolution. The
tree height was estimated using all the bands.
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4. Discussion

The TOA and surface BRFs showed strong dependence on
the view zenith angle (Figs. 5 and 6), although the view azimuth
angles were approximately 20° off the solar principal plane
(Fig. 3). The relationships are similar to those that have been
reported for the azimuth angles off the solar principal plane
(e.g., Deering et al., 1999; Russell et al., 1997). BRDF of forest
canopies is typically characterised by strong reflectance in the
backscatter direction with a peak in the hot spot. The directional
dependence of the reflectance is usually weaker in the forward
scatter direction, and reflectance reduces quickly as view
azimuth angle increases off the principal plane (Bicheron et al.,
1997; Deering et al., 1999; Kleman, 1987; Russell et al., 1997).
The design and orbit of MISR does not allow observations
closer to the principal plane, where BRDF effects are most
pronounced (Chen et al., 2005). The slight increase of BRF in
the largest view angles in the forward scatter direction was
explained by Deering et al. (1999) by the high canopy
transmission of broadleaved species and specular reflectance
from the leaves. Furthermore, the atmospheric correction has a
major effect on the directional reflectance because of path
radiance and directional scattering of the atmosphere, particu-
larly in the shortest wavelengths and largest view angles
(Barnsley et al., 1997; Deering & Eck, 1987; Russell et al.,
1997).

According to the mean BRFs of the tree cover and height
classes, the red band seem to be the most sensitive band to the
tree cover, and red and NIR bands the most sensitive bands to
the tree height (Figs. 5 and 6). In the visible bands, the BRFs
Fig. 11. Observed (a) and estimated (b) tree height (m) at 275 m resolution. The
tree height was estimated using nadir and multiangular red bands.
decrease as tree cover and height are increased because of
higher absorption by the chlorophylls as leaf area increase. In
the NIR, the reflectance is supposed to increase with increasing
tree cover and height. However, the relatively large proportion
of coniferous trees in the largest tree cover and height classes
decreased the NIR reflectance, and the smallest and largest tree
cover and height classes were confused.

The most accurate estimates of all the target variables were
achieved when using all the spectral–angular data. The
multiangular data also produced more accurate estimates than
the equivalent nadir bands. The potential of directional
information to improve the discrimination of forest types and
land cover classes have been demonstrated previously by
several authors (Abuelgasim et al., 1996; Bicheron et al., 1997;
Braswell et al., 2003; Sandmeier & Deering, 1999). Braswell et
al. (2003) estimated sub-pixel land cover fractions in Brazilian
Amazonia using MISR data, and got better model fit and lower
estimation errors when using all the MISR bands as opposed to
nadir data. Ranson et al. (2004) found that MISR red band data
could produce consistent tundra–taiga transition zone maps
with several other remote sensing data sets at several spatial
resolutions. Gemmel (2000) concluded that multiangular data
reduce the effects of background spectral variations in forest
reflectance model inversion and hence improve the accuracy of
the derived forest characteristics.

The tree cover and height were overestimated in the areas of
dense shrub cover and in the mires, but overestimation was
reduced to some extent when nadir data were coupled with
multiangular data. Sandmeier and Deering (1999) found that the
combination of nadir and off-nadir data improved substantially



Fig. 13. The effect of shrub cover on the relative RMSE (on the left) and relative bias (on the right) of the tree cover estimates. (a) shows the accuracy at 275 m
resolution and (b) at 1.1 km resolution.
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the classification accuracy of the fen site. The conclusion was
that multiangular data depend more on the canopy character-
istics than on the undergrowth vegetation. Furthermore, the
angular signature of inundated areas has been reported to be
different from that of forests (Bicheron et al., 1997; Vanderbilt
et al., 2002). The relatively strong forward scatter of mires is
suggested by their bluish tone in the multiangular composite
(Fig. 4b). However, the further examination of the angular
signatures of the different land cover types was outside the
scope of this study.

The smallest RMSEr were 56.1% and 37.6% for tree cover
and tree height at 275 m resolution, and 36.9% and 25.4% at
1.1 km resolution, respectively. The estimation errors were
considerably larger when coniferous and broadleaved tree cover
was estimated separately. The pixel-wise estimation accuracy of
the forest inventory variables has been assessed only rarely at a
low spatial resolution (Hansen et al., 2002), although the
applicability of the data depend on its accuracy. Schwarz and
Zimmermann (2005) used generalized linear models (GLM)
and MODIS data at 500 m resolution to estimate tree cover over
the European Alps. The lowest mean absolute error (MAE) was
9.1%. For comparison, the lowest MAE of the tree cover was
4.7% at 275 m resolution and 3.0% at 1.1 km resolution in this
study. If MAE is normalized by the mean tree cover (compare to
Eq. (2)), the error in tree cover was 36.4% in Schwarz and
Zimmermann (2005), and 41.0% and 27.5% at 275 m and
1.1 km resolution in this study. Therefore, the accuracy of the
tree cover and height estimates seems to be relatively good. The
relatively poor estimation accuracy is typical for species-wise
estimates of forest inventory variables (Hyvönen, 2002; Mäkelä
& Pekkarinen, 2004).

The tree height estimates were more accurate than tree cover
estimates regardless of the combination of input bands or
resolution. This is explained by the larger standard deviation of
tree cover. However, the visible to NIR data could also be more
sensitive to variability in tree height than in tree cover. The
combination of nadir and multiangular bands reduced the
estimation errors of the both tree cover and height almost
equally. In relation to the multispectral nadir data, the maximum
reduction in RMSE was 17% in tree cover and 15% in height
estimates at 275 m resolution, and 25% and 28% at 1.1 km
resolution. The broadleaved tree cover was also estimated more
accurately than coniferous tree cover. Broadleaved forests are
more abundant in the study area and in the training data than
coniferous forests. Therefore, the standard deviation of the
broadleaved tree cover is smaller than that of coniferous tree
cover, and estimates are more accurate.

The best predictor varied between the target variables in the
statistical analysis. The tree cover and broadleaved tree cover
were estimated most accurately by the multiangular red bands,
and coniferous tree cover by the NIR bands. The green bands
were the best input data in the tree height estimation, but the



Fig. 14. The effect of mires on the relative RMSE (on the left) and relative bias (on the right) of the tree cover estimates. (a) shows the accuracy at 275 m resolution and
(b) in the 1.1 km resolution.
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difference with the red and NIR bands was very small. Table 3
showed that the estimation accuracy of tree cover and height is
improved only a little when estimated using all the bands
instead of the combination of the nadir and multiangular red
bands. This is interesting since only multiangular red data is
available at 275 m resolution in the MISR global mode. The
improvement was the greatest in the case of coniferous tree
cover, which was best estimated by using NIR bands.

The tree cover and height estimates were more accurate at
1.1 km than at 275 m resolution. The studies using high spatial
resolution data to estimate forest variables, for example Landsat
TM data, have shown that the estimation errors are improved as
the inventoried area is increased. For example, per-pixel RMSE
is typically around 60–80% for timber volume estimates at 30 m
resolution, but the increase of inventory area to 30 ha can
decrease the relative estimation error to approximately 20%
(Mäkelä & Pekkarinen, 2004). Hansen et al. (2003) report that
averaging of the percent tree cover product from 500 m to 1 km
improved the validation measures dramatically. Similar results
have been common (Hagen et al., 2002; Townshend et al., 2000).

The smaller standard deviation of the target variables at
1.1 km resolution is apparently one reason for better
estimation accuracy at coarser resolution. However, the
accuracy of the estimates is dependent also on the accuracy
of the training data. The accuracy of the biotope inventory
data used in this study have not been examined using
independent field measurements, but Kunnari (2000) assessed
the data against the interpretation keys collected in the field.
The estimation errors were within the typical estimation error
of the stand-wise forest inventory, which is around 20%. Only
shrub cover estimates were significantly biased. The estima-
tion errors in the biotope inventory data were reduced when
up-scaling from 275 m resolution to 1.1 km resolution
(Hansen et al., 2002). The bias in the shrub cover could be
the reason for inconsistency, which was observed when
estimation errors in tree height were studied in relation to
shrub cover. The mires have been delineated accurately in the
biotope inventory data (Kunnari, 2000), which could explain
the better consistency of the results in relation to fraction
cover of mire.

The scale of the estimation is not only limited by the spatial
resolution of the satellite data but also by the scale of the training
data. When relating field data to remotely sensed data, it is
important that field data represent an area similar to the pixel of
the image (Wulder, 1998). The mean size of the mapping units
(tree covered) was 14.3 ha (median=3.8 ha) in the biotope
inventory data (n=42656). The largest units were over 700 ha in
size. Only 66% of the units were smaller than 275 m pixel
(7.6 ha), but 98.2% of the units were smaller than 1.1 km pixels
(121.0 ha). Hence, the biotope inventory could be better training
data at 1.1 km resolution than at 275 m resolution, also partly
explaining the better estimation accuracy at the lower resolution.

Quantitative interpretation of satellite data at the pixel level
is hindered by the errors in the co-registration of training and



Fig. 15. The effect of the shrub cover on the relative RMSE (on the left) and relative bias (on the right) of the tree height estimates. (a) shows the accuracy at 275 m
resolution and (b) at 1.1 km resolution.

Fig. 16. The effect of mires on the relative RMSE (on the left) and relative bias (on the right) of the tree height estimates. (a) shows the accuracy at 275 m resolution and
(b) at 1.1 km resolution.
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satellite data. These errors are likely to be smaller at 1.1 km
resolution than at 275 m resolution (Hagen et al., 2002).
Furthermore, the averaging of the MISR data to 1.1 km
resolution will reduce the adjacency effects (Huang et al.,
2002; Townshend et al., 2000). Adjacency effects has been
found to hinder the ability to derive surface information from
satellite images on a per-pixel basis by decreasing the
accuracy of the spectral mixture analysis (Townshend et al.,
2000) and image classification (Huang et al., 2002). The off-
nadir viewing, the lack of the atmospheric correction, and the
bilinear interpolation used in the geometric correction
(Jovanovic et al., 1998), are likely to pronounce the adjacency
effects in the MISR data at 275 m resolution (Huang et al.,
2002).

The effect of the atmospheric correction on the estimation
accuracy could not be studied because of obvious artefacts in
the MISR Level 2 Land Surface data. However, the
differences between the tree cover and height classes were
very similar in both TOA and surface data (Figs. 5 and 6),
which suggest that atmospheric correction is unlikely to have
a major effect on the estimation accuracy. This is also
supported by Braswell et al. (2003), who found that the
atmospheric correction did not affect the estimation accuracy
of land cover fractions in the Brazilian Amazon. Furthermore,
the topography also affects the multiangular data (Schaaf et
al., 1994) and could lower the estimation accuracy. However,
obvious topography related estimation errors were not
observed when residuals of the estimates were mapped.

5. Conclusions

The comparison of different spectral–angular input combina-
tions ofMISR bands for tree cover and height estimation suggest
that multiangular data and combination of multispectral and
-angular data can provide improved tree cover and height
estimates over visible to NIR nadir data for the heterogeneous
tundra–taiga transition zone. The estimation accuracy was also
improved somewhat in the shrub covered areas and mires, which
have typically had the lowest classification accuracies in the
study area. The results support the findings of the previous
studies using multiangular data for land cover mapping. The
multiangular data seem to increase sensitivity to the vegetation
structure and reduce the effects of undergrowth vegetation which
improves the estimation accuracy in comparison to nadir data.
So far the use of multiangular data has been somewhat limited in
land cover mapping (Braswell et al., 2003). Also, the use of sub-
pixel estimation has been very limited in the tundra–taiga
transition zone.

In this study, MISR data were used for testing the potential
of multiangular data for tree cover and height estimation with
extensive reference data. However, for mapping purposes, the
atmospheric correction of satellite data and application of an
appropriate BRDF model would be necessary. The BRDF
model would be used for normalizing the observations to the
same observation and illumination geometry, which would
enable the combination of data from several orbits to cover
larger areas. The atmospheric correction would enable also
the collection of observations over a period of time to
improve the BRDF characterization. After fitting a BRDF
model to the observations, either BRDF model parameters
(Lovell & Graetz, 2002) or some anisotropy index calculated
from the model (Chen et al., 2005; Sandmeier & Deering,
1999) would be used for classification or estimation of land
surface variables. The application of a BRDF model would
also enable the separation of spectral and directional
information (Barnsley et al., 1997; Hyman & Barnsley,
1997; Lovell & Graetz, 2002) for studying the relative
importance of spectral and directional information in the land
cover characterization.
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