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Abstract

The Multi-angle Imaging SpectroRadiometer (MISR) data products now include a scene classification for each 1.1-km pixel that was
developed using Support Vector Machines (SVMs), a cutting-edge machine learning technique for supervised classification. Using a combination
of spectral, angular, and texture features, each pixel is classified as land, water, cloud, aerosol, or snow/ice, with the aerosol class further divided
into smoke, dust, and other aerosols. The classifier was trained by MISR scientists who labeled hundreds of scenes using a custom interactive tool
that showed them the results of the training in real time, making the process significantly faster. Preliminary validation shows that the accuracy of
the classifier is approximately 81% globally at the 1.1-km pixel level. Applications of this classifier include global studies of cloud and aerosol
distribution, as well as data mining applications such as searching for smoke plumes. This is one of the largest and most ambitious operational uses
of machine learning techniques for a remote-sensing instrument, and the success of this system will hopefully lead to further use of this approach.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Multi-angle Imaging SpectroRadiometer (MISR) (Diner
et al., 1998) provides an unique view of the Earth by capturing
images from nine cameras at fixed angles ranging from nadir to
70.5° in both the forward and aft directions relative to the
direction of motion of the satellite platform. MISR exploits the
multiple angular views of each scene to retrieve a number of
physical parameters, including the height of clouds using
stereoscopic pattern matching (Moroney et al., 2002) and
aerosol microphysical properties (Martonchik et al., 2002).
While MISR data products include multiple cloud masks based
on several different algorithms, previously there was no data
product that attempted to make distinctions between clouds and
aerosols, or between clouds and highly reflective snow or ice.
Several years ago we began a project to investigate the use of
machine learning techniques to add new classifiers and to
improve the accuracy of existing MISR cloud classifiers (as
described in the Algorithm Theoretical Basis Documents on
“MISR Level 1 Cloud Detection” and “MISR Level 2 Cloud
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Detection and Classification” (Diner et al., 1999)). This has
resulted in the operational system we describe here.

2. Background

2.1. Supervised classification

In the paradigm of supervised classification, a user wishes to
classify objects into k discrete categories. In the training phase,
the user presents to a learning algorithm a collection of n objects
x1,…, xn along with corresponding labels yi∈{1,…,k}, indicat-
ing the category or class each object belongs to. In this case,
each xi is a vector of numerical features derived from one MISR
1.1-km image pixel to be classified, and the labels yi correspond
to the different scene classifications, such as “cloud” or
“smoke.” The learning algorithm then develops a model of
the data, which it can then use to classify new examples into the
correct category. (In contrast, unsupervised classification is
where an algorithm looks for patterns in the data to separate it
into categories without being given training labels by a user.)
The accuracy of a particular model can be assessed by applying it
to new examples and comparing the classifications to the
“correct” classifications given by a human expert. Note that the
same learning algorithm can often produce quite different
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models given the same training data, depending on various user
parameters. No straightforward learning algorithm is known that
always produces a good model on any training data without any
other user parameters. In fact, so-called “perfect” learning can be
proven to be computationally infeasible. Nevertheless, recent
advances have resulted in practical techniques for machine
learning that work quite well under many circumstances.

Machine learning systems are either online or offline. Online
learners continually update their model based on new observa-
tions or new labels. Offline learners go through a training
process to produce a single fixed model, which is then used to
classify all future examples. While we were collecting training
labels from scientists, we used the online learning paradigm: the
model was constantly being updated as each new label was
added. Once a comprehensive set of training labels was
collected, we switched to an offline learning mode, using a
slower, more robust technique to train a single best model. Our
operational system simply applies this model to all new
examples, without any adaptation. This keeps the operational
system simple and predictable. Of course at any time we have
the option of swapping in a better model that was trained offline.

Methods for supervised classification include maximum
likelihood, k-nearest-neighbor, decision trees, artificial neural
networks, and Support Vector Machines (SVMs). For this
project, we focused on SVMs, one of the newest and most
promising learning techniques. One of the shortcomings of
many learning techniques is the tendency to overfit the training
examples, resulting in a model that correctly classifies the
training data but fails to generalize well to new examples.
SVMs are specifically constructed to minimize a statistical
bound on the generalization error, resulting in models that
extrapolate to new examples quite well. SVM training is also a
deterministic quadratic optimization procedure, making SVM
training faster than neural network training, which is usually
done using a randomized procedure. One downside of SVMs is
that the models they produce can be large, leading to slow
evaluation of new examples. To circumvent this problem, we
explored various optimization techniques to make SVMs fast
enough for operational use.

2.2. Related work

Dozens of papers exist on automatic satellite pixel classi-
fication using learning algorithms. Some pioneering work was
done by Welch et al. (1992), comparing the use of discriminant
analysis and two types of neural networks to classify pixels in
Advanced Very High Resolution Radiometer (AVHRR) images
as one of a number of classes. Bankert (1994b,a) and Bankert
and Aha (1995) compared neural networks to decision trees and
a 1-nearest-neighbor classifier in AVHRR data. Tian et al.
(2000) used probabilistic neural networks to classify 10 cloud
types in Geostationary Operational Environmental Satellite
(GOES) images using both spatial and temporal features.
Saitwal et al. (2003) extended Tian et al.'s work to nighttime
classification. Baum et al. (1997) used fuzzy logic to detect
multilayer systems in AVHRR scenes based on examples
getting classified into more than one of eight trained cloud
classes. Azimi-Sadjadi and Zekavat (2000) used a hierarchical
arrangement of support vector machines to classify six different
cloud types in infrared GOES-8 imagery, while Lee et al. (2004)
investigated using a multi-class support vector machine to
distinguish between ice and water clouds in MODIS images. Li
et al. (2003) used the maximum likelihood technique to improve
on the basic cloud classification provided in the MODIS stand-
ard product. This is only a tiny fraction of the work that has been
done in the area, and is not intended to represent a compre-
hensive survey.

While many research projects have investigated the use of
machine learning techniques to classify pixels from remote
sensing instruments, very few have resulted in an application in
an operational environment. One successful example is Bank-
ert's real-time classifier for GOES images available on the web
(Bankert, 2005), which uses a nearest-neighbor classification
algorithm and a large collection of training data. More details
about his approach are given in Tag et al. (2000), which
describes the approach as applied to AVHRR imagery. An
SVM-based classifier is currently running onboard NASA's
EO-1 spacecraft, as part of the Autonomous Sciencecraft
Experiment (Mazzoni et al., 2005a,b). When images of certain
targets are acquired by the Hyperion instrument, the classifier
applies a trained SVM to 12 of its 242 spectral bands to classify
each pixel as land, water, cloud, ice, or snow. Simple heuristics
are then used to determine whether or not the image should be
saved for downlink or discarded to make room for more
interesting images.

2.3. MISR data products

The Multi-angle Imaging SpectroRadiometer (MISR) instru-
ment (Diner et al., 1998) flies on NASA's Terra (AM-1)
spacecraft, in sun-synchronous polar orbit with an equator
crossing time of 10:30 am. MISR images an approximately
400 km wide swath of the daylit portion of the earth in four
spectral bands (blue, green, red, and near-infrared) from nine
different viewing directions (±70.5°, ±60.0°, ±45.6°, ±26.1°,
and 0°). Each camera has a maximum resolution of 275 m, but in
normal operation only the nadir camera and the red channel of
the other 8 cameras capture data at full resolution; the other
channels are subsampled to 1.1 km to reduce the data trans-
mission volume.

MISR's level 1B (L1B) products, which contain the
calibrated radiances from all nine cameras, are coregistered
based on their ground location, onto a predetermined grid
described by the World Geodetic System 1984 (WGS94)
ellipsoid using the Space-Oblique Mercator (SOM) projection
(Diner et al., 1998). Georectification of the MISR image pixels
has been shown to be accurate to approximately 50 m
(Jovanovic et al., 2002). Although the nine MISR cameras
view the earth at slightly different times, with approximately
1 min between each camera's view, the accurate coregistration
of the images onto the same grid makes it easy to compare each
camera's view of the same pixel.

MISR's level 2 (L2) products contain data sets derived from
the L1B data, such as the cloud masks, the estimated height of
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each pixel, estimated wind speed and direction, aerosol optical
depth, and aerosol microphysical properties. L2 products range
from 1.1-km to 17.6-km resolution. We developed our SVM
cloud classifier to work as a new L2 product, taking L1B data as
input and outputting a classification decision for each 1.1-km
pixel.

2.4. Support vector machines

What follows is an extremely brief introduction to the theory
of Support Vector Machines (SVMs). Modern SVMs were
introduced by Cortes and Vapnik (1995); interested readers are
referred to tutorials such as Burges (1998) or books such as
Schölkopf and Smola (2002) for a thorough treatment of the
subject. As in most machine learning problems, we represent
each training example by a feature vector xYi, where all of the
relevant data used to classify each example has been captured in
a vector of numbers. Consider, first, the binary case, where there
are only two classes of items to separate. Given a set of training
examples xY1; N ; x

Y
N and corresponding training labels y1,…,

yN∈{+1, −1}, a linear binary SVM attempts to find the
hyperplane that best separates the positive from the negative
examples; new points are then classified by determining on
which side of the hyperplane they lie. Of all possible
hyperplanes that separate the training examples, the one is
chosen which maximizes the margin, the sum of the distances
between the hyperplane and the nearest positive and negative
example. Parameterizing the hyperplane as wY d xY þb ¼ 0, the
following inequality expresses the constraint that each example
must fall on the proper side of the hyperplane:

yiðxYi d wY þ bÞ−1z0 ð1Þ

If all constraints are minimally satisfied, it can be shown that
the margin must equal 2=jjwY jj. Thus finding the margin-
maximizing satisfying solution corresponds to minimizing
jjwY jj while satisfying Eq. (1) for each i∈{1,…, N}. Using
Lagrange multipliers, the problem is transformed into its Wolfe
dual, making it possible to express the optimization purely in
terms of the Lagrange multipliers αi, where finding the solution
is equivalent to maximizing

XN

i¼1

ai−
1
2
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XN

j¼1
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Y
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subject only to the constraints that each αiN0. This can be
solved using conventional quadratic programming (or special-
ized algorithms for SVMs such as SMO (Platt, 1998, 1999)),
and wY and b can be computed directly once the solution has
been found.

To allow some of the examples to fall on the wrong side of
the hyperplane when no perfect solution can be found, positive
slack variables ξi can be introduced such that:

yiðxYi dwYi þbÞ−1þ niz0: ð3Þ
To maximize the margin while minimizing the use of slack
variables, our new objective function is to minimize the sum:

jjwjj þ C
XN

i¼1

ni ð4Þ

where C is a user defined parameter that controls the balance
between margin maximization and error minimization. Surpris-
ingly, when converting to the dual form, the slack variables
disappear and the solution is identical to Eq. (2) except that each
Lagrange multiplier αi must now be bounded above by C.

To handle nonlinear situations, note that the original example
vectors xYi only appear in Eq. (2) inside of an inner product.
Replacing xYi d x

Y
j with ðxYi d xYjÞ2 turns out to be equivalent to

mapping each xYi to a higher-dimensional feature space and
performing the dot-product there. In general, we replace each
xYi d x

Y
j with K (xYi; x

Y
j), where K (uY; vY) is a so-called kernel

function, which operates only on the inner product of uY and vY,
but corresponds to mapping uY and vY to a (possibly infinite-
dimensional) space and computing the dot product there. It turns
out that the functions permissible as K are those which are
positive definite. Common kernels include:

Linear KðuY; vYÞ ¼ u
Y
d v
Y

Polynomial KðuY; vYÞ ¼ ðuY d vYþaÞp

Gaussian KðuY; vYÞ ¼ expð−gdjj uY− vY jj2Þ

Sigmoid KðuY; vYÞ ¼ tanhðgd uY d v
YþaÞ

Normalized K VðuY; vYÞ ¼ KðuY; vYÞKðuY; uYÞ−1
2Kð vY; vYÞ−1

2

Substituting a kernel function into the optimization problem
is a convenient way to add nonlinearity because the optimiza-
tion problem has not increased in complexity, but the
hyperplane found belongs to the implicit higher-dimensional
space. When backprojected into the original space, the
separating surface can now be curved. Before, it was possible
to compute the equation for the hyperplane directly, but now wY

and b exist in the implicit higher-dimensional space. In order
to determine what side of the hyperplane a new example qY is
on, the training examples and Lagrange multipliers must be
used:

f ðqYÞ ¼
XN

i¼1

aiyiKðYq; xYiÞ þ b; ð5Þ

which returns a positive number if the example is on the
positive side of the hyperplane and a negative number
otherwise. For large numbers of training examples, this can
lead to a lengthy computation just to evaluate a single new
example. Luckily, αi will usually go to zero for the majority of
the examples; the remaining example vectors with positive αi
are called support vectors and are the only ones that need to be
used to evaluate a new example. Typically the number of
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support vectors scales roughly with the complexity or
difficulty of the classification problem. Thus, for difficult
problems, the number of support vectors can still be large.

To reduce the computational challenge of evaluating new
examples when there are hundreds of support vectors, various
techniques have been proposed to reduce the number of support
vectors needed. Burges (1996) proposed a method to incre-
mentally construct a smaller set of vectors that approximate the
same hyperplane as the SVM. The more vectors that are used,
the better the approximation, but often the results are
indistinguishable from the original hyperplane after only a
fraction of vectors have been constructed. This method is
powerful but difficult to implement in practice because it
requires a nonlinear nonconvex optimization procedure.

Finally, SVMs are extended to classify examples into more
than two classes by breaking the problem down into several
binary problems. For example, if there are k classes, k(k−1) /2
classifiers can be trained, one to distinguish between each pair
of classes. To evaluate a new example, all classifiers are run and
each one casts a “vote” as to the correct class. A simpler method
is to train k “one-vs-all” classifiers, each one of which
distinguishes between one class and all k−1 others. To evaluate
a new example, the one with the largest (most positive) raw
SVM output from Eq. (5) is chosen as the class decision. The
one-vs-all approach is slower to train but faster to classify,
which was an important consideration since our final classifier
needed to be able to run quickly. Neither of these two
approaches has been shown to be superior to the other in
terms of accuracy; they perform similarly, as do several other
proposed methods for solving multi-class problems using
binary classifiers.

3. Methodology

Here we describe how feature vectors were constructed from
the raw MISR pixel data, and then how we went about
collecting training data and developing the operational SVM
classifier. One of our goals in this project was to maximize the
effectiveness of time donated by expert scientists to this project.
To realize this goal we used a custom tool for interactive
training that expert scientists used when providing training
labels. This interactive approach was an important part of the
success of the project.

3.1. Constructing feature vectors

An SVM, like any other machine learning algorithm,
considers each example it sees as simply a mathematical vector
of numbers; the technique is the same whether the examples to
be classified are pixels, people, or potatoes. An important step
in training a supervised classifier in the real world is to
determine what features should be used for each example.
Previous pixel classifiers used for remote-sensing instruments
have used spectral, texture, and contextual features. Because our
classifier applies to MISR data, we could also incorporate
angular features, making use of data from multiple cameras. We
therefore had four types of features to consider incorporating.
To determine whether a certain type of feature was worth
including, experiments were done comparing the accuracy of
classification of the same examples with and without each type
of feature, using a JPL-developed feature extraction library
called LibFeature (Mazzoni, 2005). Some of these experiments
were performed early on, before any expert training examples
were available, in order to create an initial system to
demonstrate the concept and to allow further experimentation.
However, these experiments were repeated several times over
the course of the training process, as we refined our plan over
time.

• Spectral features were a clear win. Using radiances from all
four of MISR's spectral bands resulted in significantly higher
accuracy than using just one or two. We converted each
radiance value to a Bidirectional Reflectance Factor so that
pixels acquired at different times and of different locations
could be compared directly.

• Angular features were also clearly useful, but with a caveat.
Because the MISR imagery is registered to the earth
ellipsoid, objects that are above sea level appear to move
from south to north through the sequence MISR cameras
depending on their height above the surface, due to the
parallax effect. For this reason, including radiance informa-
tion from MISR's 70° cameras in the same vector as data
from the nadir (0°) camera tended to reduce classification
accuracy, because the pixels were often not from the same
object. After much experimentation, we settled on extracting
features from the center five (+45.6°,+26.1°, 0°, −26.1°,
−45.6°) of MISR's nine cameras.

• Contextual features could include the latitude and longitude
of the pixel being classified, the view angle geometry, the
time of year, the expected type of surface (land, water, etc.) or
even things such as local weather conditions.We investigated
several such features, but decided against using most of them
out of fear of overfitting. For example, including the latitude
as a feature would likely result in a classifier that was more
likely to classify a pixel as snow/ice near the poles and less
likely near the equator.We felt this was undesirable as it could
be less likely to detect clouds over the poles or snow on
mountains in mid-latitudes. Including the time of year as a
feature was problematic because, in order to avoid undesired
behavior, examples would need to be found of every class
during every time of year, significantly increasing the effort
during the training process. As a result, we settled on only two
such features: the cosine of the solar zenith angle and the
expected surface type (land vs. water). The cosine of the solar
zenith angle accounts for the change in the amount of
available illumination per unit area depending on the relative
location of the sun in the sky and helps distinguish between
surfaces that are truly reflective and locations, such as oceanic
sunglint, that are bright due to geometric effects. The surface
type was already available and easily obtained from MISR
ancillary data fields; its resolution was the same as our
classifier, 1.1 km square.

• Texture features include a broad range of possibilities. The
use of texture features usually implies numerically capturing
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the patterns that might appear in a local region, defined as
anywhere from a few neighboring pixels to a radius of
several dozen pixels. Popular texture features include
Haralick features, wavelet features, and Gabor filter features.
Unfortunately, computing these features can be quite slow,
requiring tens of thousands of computations per pixel, and
we found this to be unacceptable for either our interactive
training application or for our intended operational classifier.
Instead, we were inspired by the work of DeCoste and
Schölkopf (2002) who showed that SVMs can been used to
successfully distinguish between different handwritten
digits, where the feature vectors consist of simply the
grayscale values of a bitmapped representation of the
scanned digit image. Other methods failed to achieve high
accuracy without incorporating some knowledge of the
structure of the data, but SVMs were found to be quite
successful at using the raw pixel values in feature vectors.
Based on this, texture information was obtained by including
the actual radiance values from a 5×5 neighborhood of 1.1-km
pixels centered at each target pixel into the feature vector.
Including a 5×5 neighborhood from at least one camera and
spectral band appeared to improve the accuracy significantly
over a 3×3 neighborhood. A 7×7 neighborhood did not
improve the accuracy; we suspect that perhaps far more
training examples would have been needed to deal with
feature vectors that large.

In the end, the feature vector that we chose to use
operationally consisted of different neighborhoods of radiance
values from each of MISR's cameras and spectral bands, plus
the two contextual features. It included 154 features: the solar
zenith angle, the surface class, and the 152 features represented
by Table 1.

All of our features were continuous-valued except for the
surface type, which was binary (land or water). Though
including the surface type could lead to discontinuities at
coastlines, in practice these were rarely observed, and
empirically including this flag in the feature vector improved
the classifier's accuracy.

We chose to gather most of our feature vectors from the
green channel not for any particular scientific reason, but
because empirically when we considered the channels inde-
pendently, the classification had the highest accuracy with the
green channel. A feature vector of size 154 is relatively large for
this type of classification. An interesting avenue for future
research would be to explore feature selection algorithms.
However, we discovered that SVMs work quite well with large
feature vectors, making it less important to minimize the size of
the feature vectors.
Table 1

45.6° 26.1° Nadir 26.1° 45.6°

Near-IR 3×3
Red 3×3
Green 5×5 5×5 5×5 5×5 5×5
Blue 3×3
3.2. Interactive training

It is very common for the process of collecting training data
to be totally complete before any machine learning algorithms
are run. However, we were very concerned that, at best, this is
an inefficient use of time, and, at worst, it can lead to poor
classification accuracy. As an alternative, a custom tool was
developed, called PixelLearn, for interactively labeling multi-
spectral, multi-angle datasets. PixelLearn includes a built-in fast
SVM training algorithm, and it updates the classification on one
half of the screen while the user adds more labels on the other
half. Fig. 1 shows a screenshot of PixelLearn in action, where a
user has labeled land, water, and cloud classes on top of a MISR
image on the left, and the SVM has classified the rest of the
pixels on the right.

One advantage of using an interactive training process is that
the classes did not need to be chosen ahead of time. Initially, our
primary goal was attempting to distinguish among different
cloud types (cirrus, cumulus, stratus, etc.). This work is
described in Garay et al. (2005) and Mazzoni et al. (2005a,b).
Reasonable success was achieved, but the overall effectiveness
of our approach was limited because cloud formations often
consist of more than one cloud type and the differences among
the cloud types as seen from the satellite can be rather
subjective. The task of separating clouds from aerosols, such as
smoke and dust, and snow/ice proved to be a more well-defined
problem. While there was much interest in distinguishing
between dust and smoke, we did not feel that we had collected
enough training examples of each. Therefore, we grouped all
aerosols into a single category, then used a separate SVM to
distinguish between dust, smoke (including volcanic ash), and
other aerosols within this category.

For speed, the SVM training algorithm in PixelLearn
typically only trains on a few thousand examples at a time.
When the user has labeled more pixels, it automatically
subsamples proportionally from each of the labeled classes.
Various SVM parameters such as the choice of kernel function
and the value of the regularization parameter C can be modified
by the user, or chosen automatically to fit the current labeled
data using a cross-validation algorithm.

3.3. Offline training

At the end of the interactive phase, we had obtained
hundreds of thousands of labeled pixels spanning hundreds of
scenes. The training labels cover all four seasons and a full
range of latitudes, however we noted that due to the interactive
training process, we ended up with relatively few training
scenes of easy-to-classify scenes, such as clouds over ocean,
and many training scenes involving relatively rare classes that
are more difficult to classify, such as smoke plumes, snow on
mountains, and aerosols.

Training a single support vector machine on the entire data
set was, unfortunately, infeasible because SVM training time is
slightly worse than quadratic in the number of training
examples. Instead, inspired by approaches to this problem
such as Collobert et al. (2002) and Graf et al. (2005), we trained



Fig. 1. The PixelLearn tool we developed allowed scientists to explore MISR data and interactively label the pixels. In the example above, the user has labeled three
regions containing water, clouds, and land in the lower-left pane, and a support vector machine classification of the image appears in the lower-right pane. For
advanced users, the controls in the top pane control all aspects of SVM training.
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an SVM on a small subset of the training examples, then applied
this to all of the remaining training examples and added only
those examples that were classified incorrectly to the new
training subset. The result was approximately 10,000 training
examples, which took on the order of hours to converge. The
SVM used a radial basis function kernel with γ=0.1; the kernel
parameters were chosen using cross-validation on the training
set.

Our resulting SVM had 1941 support vectors. With 154
elements in each feature vector, evaluating a single pixel would
require about 300,000 multiply-add instructions, about an order
of magnitude larger than we could afford given the computa-
tional constraints that needed to be met in order to run our
algorithm as part of the operational MISR data products system.
As a result, it was necessary to find a way to reduce the number
of support vectors without significantly affecting the accuracy
of the classifier.

We found that Burges' constructive method (Burges, 1996)
worked quite well at finding an approximate solution to binary
SVMs. We made several improvements by adapting the
algorithm to reduce multiclass SVMs, as well as binary, and
using a faster, more robust optimization procedure based on
Differential Evolution (Storn and Price, 1997) instead of
Burges' gradient descent; this new technique is described in a
paper by Tang and Mazzoni (2006). As the number of reduced
vectors increased, the accuracy of our reduced SVM improved,
approaching the accuracy of the model containing all 1941
support vectors. We decided that the SVM containing 98
reduced vectors had approximately the right combination of
accuracy and speed. (On our validation data set, described
below, the non-reduced SVM had an overall accuracy 0.9%
higher than the reduced SVM, but was over 10 times slower.)
Our dust vs. smoke SVM was trained in a similar manner.
Because it was less important, we settled on only 20 reduced
vectors to use for this classifier. Both SVMs used the same
feature vectors.

4. Operational implementation

We integrated the SVM classifier into the operational data
processing system at the Langley Atmospheric Science Data
Center, as part of release 4.0 of the MISR processing software,
which started processing new data on December 1, 2005. The
code runs as part of the level 2 processing and generates several
new fields as part of the top-of-atmosphere/cloud classifiers
data file. Examples of the classifications produced by the
operational classifier can be seen in Figs. 2 and 3. For
information on how to access and use these data products, see
the MISR Data Products Specifications (http://eosweb.larc.
nasa.gov/PRODOCS/misr/DPS/).

While the code to build feature vectors from MISR pixels
and evaluate an SVM was written specifically for this
application, the SVM model is stored in a separate ancillary
file to enable future enhancements. The ancillary file also
contains a table indicating the number of pixels to include from
each MISR camera/band in the feature vector, allowing for the
possibility of a future enhancement to the classifier using a
different feature vector (within the same framework).

For efficiency, data is processed one row at a time. Because of
our 5×5 neighborhoods of pixels used for texture, the radiance
data from at least two previous and two following rows must be
kept in memory as well. Feature vectors are generated for one

http://eosweb.larc.nasa.gov/PRODOCS/misr/DPS/
http://eosweb.larc.nasa.gov/PRODOCS/misr/DPS/


Fig. 2. An example of the operational MISR pixel classifier in action. The scene focuses on north-eastern India, with the Himalayas at the top. The left swath is from
MISR's nadir-pointing camera, and the middle swath is from MISR's 45° forward-pointing camera. The image on the right shows a representation of the SVM
classifier's output. The SVM classifier has correctly identified the snow on the mountains, a lake, pollution aerosols over the low-lying plains, and clouds in the lower
part of the scene. The vertical stripe down the center of the MISR image is due to poor-quality data from one of the pixels in the center of one of MISR's cameras. This
data was captured on December 2, 2005, Terra orbit 31686, path 145, MISR blocks 66–70.
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row of data and stored in a single contiguous array. If any
radiance values from any pixel are missing, the entire pixel is
marked as bad and the SVM computation is skipped; SVMs are
not robust to missing values in feature vectors. The most time
consuming operation is to take a row of m feature vectors of
length d, and compute the output of the kernel function K (uY; vY)
between each feature vector and each of the n support vectors.
Dot products were implemented using a cache-efficient matrix
multiply subroutine, taking O(m ·d ·n) operations.

Recall that our five-class SVM is implemented using five
separate binary SVMs, each trained to distinguish one class from
the four others. The classification decision for each pixel is
chosen by the class with the largest SVMoutput value. However,
this adds little information about the possible uncertainty of this
Fig. 3. Another example of the operational MISR pixel classifier. This scene shows
2003. The images show MISR's nadir-pointing camera, MISR's 45° forward-point
separated the smoke from the clouds in this scene, and nicely traces out the shape o
result. Five additional fields were therefore included that
indicate the likelihood that the pixel belongs to each of the
five classes, where the confidence is determined by the real-
valued output of each binary SVM. To keep the file size small,
only one of four possible values for each class is reported:

1. With high confidence, pixel is in this class.
2. With low confidence, pixel is in this class.
3. With low confidence, pixel is not in this class.
4. With high confidence, pixel is not in this class.

These values were chosen to be analogous to the four
possible values for a pixel in a MISR cloud mask. As a result, a
user can not only determine that one pixel is most likely aerosol,
the B&B Complex Fires in central Oregon that were observed on September 4,
ing camera, and the SVM classifier's output. The SVM classifier has correctly
f the smoke plumes. Terra orbit 19753, path 44, MISR blocks 51–55.



Table 3

% Cloud Water Land Ice Aerosol

Cloud 80.1 7.0 2.3 8.0 1.9
Water 10.0 88.5 0.5 0.3 0.6
Land 11.6 1.5 77.7 3.3 5.8
Ice 28.2 0.2 1.5 70.0 0.1
Aerosol 6.6 8.4 9.6 0.1 75.3

Table 4
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for example, they can also distinguish between the confident
case where the aerosol classifier is highly positive, and the other
classifiers are highly negative, and the ambiguous case where
two or more classifiers are highly positive. We used thresholds
of ±1.0 on the SVM output, which has good theoretical
justification, i.e. if the SVM output was 1.1 it would be high
confidence positive, if 0.9 it would be low confidence positive.

Although the dust vs. smoke SVM was trained entirely
separately, it is packed into the same matrix of support vectors
for simplicity. Thus, a total of 118 support vectors are evaluated
for each pixel. The first 98 of these are used for the single five-
class classification (aerosol, cloud, land, water, ice/snow) plus
the five confidence fields for these classes, and the last 20
support vectors are used to distinguish between dust and smoke,
but only over areas where the aerosol is chosen as the most
likely classification.

5. Validation

The final classifier was validated by having two human
experts independently label millions of pixels. These labels
were then compared with the results of the SVM classifier. In
addition, two human experts each labeled some of the scenes
independently, making it possible to compare the error rates of
the SVM with the degree of disagreement between the human
labels. Unfortunately at this time we have not completed
validation of the aerosol subclassification (dust vs. smoke vs.
other aerosols); we hope to discuss this in a future paper.

Validation was performed using four complete MISR orbits,
chosen so that they were spread out reasonably well in both
space and time. Table 2 expresses the overall accuracy,
expressed as the percentage of pixels for which there was
agreement in the classification.

Overall, the SVM's five-class classification decision agreed
with the human expert 80.9% of the time, at the 1.1-km pixel
level. When each block of 16×16 pixels was replaced by the
majority class, the agreement improved to 84.9%, indicating that
a small but significant fraction of the errors were isolated
blunders and not gross misclassifications. The level of
agreement between two humans, at 93.0% and 96.3% for the
1.1-km and 17.6-km resolutions, respectively, quantify the
degree of subjectivity present in these experiments. These serve
as an upper bounds for the maximum performance one could
expect from any classifier. It should be noted that Hutchison
et al. (1997) gave an accuracy of 98–99% for a single, trained
analyst repeatedly classifying the same scene using an
interactive labeling tool. Discrepancies are obviously increased
when two different scientists attempt to classify the same scene.
Moreover, inspection of the differences revealed that they were
most common along the boundaries of classes — the edges of
clouds, for example. These situations are fundamentally
Table 2

1.1-km resolution 17.6-km resolution

SVM 80.9% 84.9%
Human expert 93.0% 96.3%
ambiguous, but their influence on the result decreases when
the 17.6-km resolution is used, as indicated by the improvement
in both the SVM and human classification.

The confusion matrix (Kohavi and Provost, 1998) in Table 3
breaks down the performance of the SVM by class. The human-
labeled classification is shown along the left-hand column, and
the SVM classification is shown along the top row.

The percentage of pixels correctly classified is shown along
the diagonal of the confusion matrix. Off-diagonal elements
indicate percentages of misclassification. For example, the
SVM correctly classified 80.1% of the pixels labeled as clouds.
It misclassified 7.0% of cloudy pixels as water, 2.3% of cloudy
pixels as land, 8.0% of cloudy pixels as ice, and 1.9% of cloudy
pixels as aerosol. Note that each row within the confusion
matrix must add to 100% because each pixel must be classified
as one category by the SVM. Each column within the matrix
will not, in general, add to 100%. As an example, consider the
case of a classifier that classified all pixels as cloudy. Then the
“Cloud” column would have 100% in each category, summing
to 500%, while each row would still equal 100%.

For the MISR SVM classifier, the confusion matrix shows
that the classification for the cloud and water classes is the most
accurate. However, in this form the confusion matrix does not
capture the fact that some classes are far more prevalent than
others. The confusion matrix in Table 4 shows the same data,
but expressed in thousands of pixels, instead of percentages.

Expressed in this way, the confusion matrix allows some
overall performance characteristics to be determined. The
overall accuracy of the classifier is the ratio of the number of
correct classifications to the total number of pixels. For the
MISR SVM, the overall accuracy is nearly 81% across all
classes. However, as shown in the table, clouds were
approximately 50 times more prevalent than aerosols within
our validation data set. In order to correctly classify aerosols, it is
necessary to have a relatively high false-positive rate. Looking at
the last column, one can compute that if a pixel is classified as an
aerosol, there is only a 33% chance that this is the correct
classification. However, looking at the last row, if a pixel really is
an aerosol, there is a 75% chance it will be classified as such.
Cloud Water Land Ice Aerosol

Cloud 10939 945 311 1086 252
Water 417 3695 22 13 27
Land 248 33 1666 71 125
Ice 563 4 29 1395 2
Aerosol 18 23 26 0 204
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This bias in favor of false positives is a natural consequence of
the fact that the aerosol class is relatively rare.

It should also be noted that, looking at the classification
output, many of the misclassifications are easily spotted. For
example, a pixel in the middle of a cloud in the central Pacific
can be classified as snow/ice. Given that the SVM is using only
local radiance information to make its classification decision,
this is to be expected. An application making use of the SVM
classifier could simply incorporate additional information to
result in an improved classification. Moreover, making use of
the local context, which has not been done for this global
classifier, the results could be improved significantly.

6. Conclusions

The project described in this paper is one of the more
ambitious and large-scale applications of machine learning
technology to an operational remote-sensing application. We
demonstrated that using an interactive application is an effective
way to make more efficient use of expert scientists' time, and
that it allows the exact definitions of the classes to be flexible
until it is determined what classifications can be made reliably.
We also demonstrated that, using reduced-set techniques, it is
possible to create an SVM with limited computational
requirements.

A variety of applications exist for this type of classification
product and the MISR project is already making use of the SVM
classifier described in this paper for a number of them. In one
case, the classifier is being used in conjunction with pattern
recognition software to automatically detect smoke plumes
from forest fires over North America. In addition, the automatic
classifier significantly reduces the time and effort it takes to
perform global studies of smoke and aerosol distributions,
which are important for understanding human impact on global
climate change.

The advantage of using a supervised classifier that can be
easily trained interactively is that it gives scientists confidence in
its performance in a variety of situations, while, at the same time,
allowing rapid development and application towards studies
involving large amounts of satellite data. The support vector
machine approach adds the additional benefit of flexibility in
feature selection that greatly reduces the time required to explore
the possible important parameters of a problem. This is
particularly useful in situations where the distinguishing features
are not readily apparent at the outset. A possible shortcoming of
the approach is that the trained SVMmay not reveal the physical
mechanisms within the feature set that allow the classification to
be performed accurately. One future avenue of research is
developing techniques that allow this important information to
be extracted from the trained SVM.
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