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Abstract

Expert labels were used to evaluate arctic cloud detection accuracies of several methods based on MISR angular radiances and MODIS spectral
radiances. The accuracy of cloud detections was evaluated relative to 5.086 million expert labels applied to 7.114 million 1.1-km resolution pixels
with valid radiances from 57 scenes. The accuracy of the MODIS operational cloud mask was 90.72% for the 32 partly cloudy scenes and 93.37%
for the 25 completely clear and overcast scenes. An automated, simple threshold algorithm based on three features extracted from MISR radiances
and the MODIS operational cloud mask agreed with each other for 74.91% of the pixels in the 32 partly cloudy scenes and 78.44% of the pixels in
the 25 completely clear and overcast scenes. These subsets of pixels had, relative to the expert labels, classification accuracies of 96.53% for the
32 partly cloudy scenes and 99.05% for the 25 completely clear and overcast scenes. Fisher's quadratic discriminate analysis (QDA) trained on
expert labels from the 32 partly cloud scenes was applied to MISR radiances, three features based on MISR radiances, MODIS radiances, and the
six features of the MODIS operational cloud mask with accuracies ranging from 87.51% to 96.43%. Accuracies increased to about 97% when
QDA with expert labels was applied to combined radiances or features from both MISR and MODIS. Operational QDA-based classifiers were
developed using as training labels those pixels for which the MISR automated, simple threshold and MODIS operational cloud mask algorithms
agreed. Training the QDA classifier on these automatic labels using MISR radiances, three features based on MISR radiances, MODIS radiances,
and the six features of the MODIS operational cloud mask led to accuracies ranging from 85.23% to 93.62% for the 32 partly cloudy scenes.
Classification accuracies increased to 93.74% (93.40%) when combined MISR and MODIS radiances (features) were used. The highest accuracy
attained with any operational algorithm tested on all 57 scenes was 94.51%. These results suggest that both MISR and MODIS radiances are
sufficient for cloud detection in daytime polar regions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Nadir radiances at different wavelengths (i.e., spectral radi-
ances) across the shortwave and longwave electromagnetic spectra
have served as the cornerstone of cloud detection from satellites
from the advent of satellite meteorology (e.g., Rossow & Garder,
1993; Saunders & Kriebel, 1988; Stowe et al., 1999; Wielicki
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et al., 1996;Wielicki & Green, 1989). The launch of theModerate
Resolution Imaging Spectroradiometer (MODIS) onboard
NASA's Earth Science Enterprise Terra and Aqua satellites
represented the culmination of deliberate scientific planning to
place on a single sensor all of the spectral channels necessary for
global cloud detection. Amongst the 36 spectral channels available
on the MODIS sensor six of them were chosen for detection of
clouds in daytime polar regions (Ackerman et al., 2002; Table 1).

The value of spectral radiances for cloud detection has been
investigated in detail, but the value of radiances emanating in
different directions to space from the same object (i.e., angular
radiances) has not (Diner et al., 1999). Studies of radiances from
scenes simultaneously viewed by two geostationary satellites
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Table 1
The six MODIS nadir radiance band-center wavelengths, the six MODIS
operational cloud mask algorithm features, the five MISR 0.620-μm radiance
view zenith angles and the three MISR features used in this study

MODIS nadir radiance band-center wavelengths
0.865 μm (Band 2)
3.959 μm (Band 21)
1.375 μm (Band 26)
6.715 μm (Band 27)
11.030 μm (Band 31)
13.935 μm (Band 35)

MODIS spectral features
I0.87,ij
BT11.03,ij−BT3.96,ij

I1.38,ij
BT6.72,ij

BT11.03,ij−BT6.72,ij

BT13.94,ij

MISR 0.672-μm radiance view zenith angles
00.0° (AN Camera)
26.1° (AF Camera)
45.6° (BF Camera)
60.0° (CF Camera)
70.5° (DF Camera)

MISR Spatial and Angular Features

LCij ¼
X4iþ2
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X4jþ2

l¼4j−5
ðIf ;kl−PIf ;ij ÞðIn;kl−PIn;ij Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The MODIS features consist of two radiances (I), two radiances converted to
brightness temperatures (BT), and two radiances converted to brightness
temperatures and differenced. The MISR features are linear correlations (LC)
between small groups of radiances from two MISR view directions, one in the
forward (f) direction and the other in the nadir (n) direction, standard deviations (σ) of
small groups of radiances from the nadir view, and the normalized difference angular
index (NDAI) based on comparing MISR nadir- and forward-view 0.620-μm ra-
diances. The subscript pair ij indicates the pixel to which the features are attributed
and Ī represents the average over the small groups of MISR radiances.
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have been possible historically, but such investigations are not
straightforward and are not easily extended to extensive data
sets (Muller et al., 2002). The conical scanning patterns of the
Along Track Scanning Radiometers, ATSR-1 on the ERS-1
satellite and ATSR-2 on the ERS-2 satellite, as well as the
Advanced Along Track Scanning Radiometer (AATSR) on the
ENVISAT satellite, have provided two different views of the
same scene, which have proven useful in detecting clouds
(Zavody et al., 2000). The Polarization and Directionality of the
Earth's Reflectances (POLDER) radiometer–polarimeter
launched on the Japanese ADEOS-I and ADEOS-II satellites
provided information on cloud particle properties through
coupled polarization and multi-directional measurements at up
to 14 view directions (Parol et al., 2004).

The Multi-angle Imaging Spectroradiometer (MISR; Diner et
al., 1998) launched with the MODIS sensor on the NASATerra
satellite measures the radiances from an object to space in nine
different directions. Early investigations of images from each of
the nine MISR view directions clearly indicated that angular
radiances contained information on surface and cloud properties
(e.g., Di Girolamo&Wilson, 2000; Nolin et al., 2002). Given that
surface-leaving (scattered) radiances at visible wavelengths are
more isotropic from surface snow and ice than they are from low-
altitude, overcast, relatively smooth clouds, for which forward
scattering is much greater than the other directions (Stephens
et al., 1981), the results of these early investigations with MISR
data were not unexpected. The NASATerra satellite travels from
north to south over the daylight side of the Earth, hence over the
Arctic MISR forward-view camera radiances from clouds over
snow- and ice-covered surfaces exceed those from the MISR
nadir-view camera. Over Antarctica MISR's aft-view cameras
record forward scattered radiation from clouds over snow- and
ice-covered surfaces and these radiances exceed those from the
MISR nadir camera. The directionality of the radiation scattered
by clouds and snow- and ice-covered surfaces and recorded by
MISR is one feature that we use in the current study.

To make maximum use of MISR's nine angular radiances for
science applications, MISR operational processing registers the
radiances from each of its nine view directions to the exact same
(space-oblique mercator) grid of points on an ellipsoid surface
(the World Geodetic System 1984, or WGS84, ellipsoid surface)
at sea level and underlying terrain (Jovanovic et al., 2002, 1998).
In one registration approach, the ellipsoid projection approach,
terrain is neglected and the radiances are projected and re-sampled
directly to the space-oblique mercator grid of points on the
ellipsoid surface (Fig. 1). In the second approach the radiances are
first projected to the terrain and then re-sampled to space-oblique
mercator grid points on the ellipsoid surface underlying the terrain
(Fig. 1). Each time MISR orbits over one of its 233 distinct paths
relative to the surface, the nine sets ofMISR camera radiances are
registered to the exact same grid point locations as for all of the
past, as well as future, MISR orbits over this path. If the regis-
tration was perfect, and the illumination, surface and atmosphere
the same, for two orbits of MISR over the same surface location
(i.e., the same path) the two images for eachMISR view direction
would be identical. This operational registration process, more
formally called georectification, allows for a second unique
feature to be produced by MISR for detection of clouds.

In this study six spectral radiances from MODIS and six
features based on them are co-registered with five angular
radiances from MISR and three features extracted from them
(Table 1). Combinations of MISR and MODIS radiances and
features, in conjunction with training labels of clear and cloudy
pixels, are used to train Fisher's quadratic discriminate analysis
(QDA) classifiers. Performances of the QDA classifiers in
separating clear from cloudy pixels are subsequently compared
with MODIS operational cloud mask results and the accuracies
of all classifiers are assessed with expert labels.

2. Methods

The accuracies of cloud detections based on MISR angular
radiances and features, MODIS spectral radiances and features,



Fig. 2. MODIS 0.659-μm radiance image of the Arctic Ocean, northern
Greenland, and Baffin Bay on May 30, 2002. White represents large radiance
values and black represents low radiance values. Black boxes within the image
show the approximate locations of consecutive three-block groups of MISR
nadir radiances (i.e., a scene of radiances) obtained at the same time as the
MODIS radiances.

Fig. 1. Cartoon illustration of MISR space-oblique mercator grid point locations
(solid dots) on the reference ellipsoid surface. In the ellipsoid projection terrain
zenith radiances from location 1 that contribute to the MISR nadir view and
terrain 70.5° forward scattered radiances from location 2 that contribute to the
MISR forward view are mapped to the same grid location at 3. In the terrain
projection terrain zenith radiances from location 2 that contribute to the MISR
nadir view and terrain 70.5° forward scattered radiances from location 2 that
contribute to the MISR forward view are mapped to the same grid location at 4.
In the absence of clouds the nine MISR radiances from a specific surface feature
have the same grid point location in the terrain projection but they have different
grid point locations in the ellipsoid projection. As a surface feature lies closer to
the ellipsoid surface containing the grid points, the differences in the locations of
the nine MISR radiances from the surface feature in the ellipsoid projection
become smaller. The nine MISR radiances from a cloud above the terrain are
mapped to different grid point locations in both the ellipsoid and terrain
projections.
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and combinations of them are evaluated relative to 2.685 million
expert labels applied to 3.946 million valid sets of 1.1-km
resolution radiances from 32 partly cloudy scenes and
2.401 million expert labels applied to 3.168 million valid sets
of 1.1-km resolution radiances from 27 completely clear and
overcast scenes. The 7.114 million valid sets of radiances are
from 10 orbits of Terra path 26 over the Arctic Ocean, northern
Greenland and Baffin Bay (Fig. 2). The repeat time between two
consecutive orbits over the same path is 16 days, so the 10 orbits
span 144 days from April 28 through September 19, 2002. Path
26 was chosen for the study because of the richness of its
surface features, which include permanent sea ice in the Arctic
Ocean, snow-covered and snow-free coastal mountains in
Greenland, permanent glacial snow and ice, and sea ice that
melted across Baffin Bay over the 144 days.

Seven MODIS radiance images for the third scene from the
top of Fig. 2, with icebergs, open water, and coastal hills, are
illustrated in Fig. 3a–g. Comparing MODIS radiances in
Fig. 3a–g with expert labels of clear and cloudy pixels in
Fig. 3h, each set of radiances is seen to characterize different
aspects of the surface and cloud objects across the scene.
Ackerman et al. (2002) clearly describe the value of MODIS
radiances for detecting clouds. To develop single-value thresh-
olds that best separate clear from cloudy pixels, transformation
of radiances for a pixel is often useful. The MODIS operational
cloud mask algorithm makes use of six features for daytime
polar regions (Ackerman et al., 2002). As Table 1 illustrates,
two of the MODIS features are radiances, two are radiances
transformed to brightness temperatures, and two are radiances
transformed to brightness temperatures and then differenced.
The scene presented in Fig. 3 with MODIS spectral radiances
is illustrated in Fig. 4 with MISR 0.672 μm nadir and 70.5°
forward-view radiances. The MISR 70.5° forward-view (for-
ward-scattered) radiances are distinctly different from the nadir
spectral radiances for cloudy scenes. It is these differences
between the nadir- and forward-view radiances for clear and
cloudy scenes that make the forward-view radiances of value for
cloud detection in the Arctic.

2.1. MISR and MODIS data

The four spectral (i.e., 0.446 μm, 0.558 μm, 0.672 μm,
0.866 μm) radiances available from each of the nine MISR
cameras are similar to four of those on MODIS. These four
spectral radiances do not contain significantly different infor-
mation of clouds over snow and ice surfaces. Only the MISR
0.672 μm (red) radiances have 275-m resolution in all nine
MISR cameras, with the other three spectral radiances having
1.1-km resolution in the off-nadir cameras. For these reasons we
used only MISR 0.672 μm (red) radiances in this study. An
earlier study by Nolin et al. (2002), together with our own
inspection of MISR imagery, led us to conclude that most of the



Fig. 3. MODIS a) 0.865 μm, b) 0.936 μm, c) 3.750 μm, d) 1.375 μm, e) 6.715 μm, f ) 11.030 μm, and g) 13.935 μm radiance images for the third (from top) three-block
MISR scene illustrated in Fig. 2. The scene contains icebergs, open water, coastal hills, and a variety of cloud types. The radiances in a)–g) have been histogram-
equalized for contrast enhancement with white representing large radiance values and black small radiance values. h) Expert labels of clear (black) and cloudy (white)
pixels for the scene together with pixels that were not labelled (grey).
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information of arctic clouds is contained in the radiances from
the MISR nadir and forward views, hence we used radiances
only from the MISR nadir and four forward-view cameras. The
MODIS radiances are of 1-km resolution and the expert labels
of 1.1-km resolution, hence we used MISR red radiances and
features of nominal 1.1-km resolution that were constructed
from the 275-m resolution red radiances.

For this study we used MISR ellipsoid-projected red ra-
diances for ocean scenes and terrain-projected red radiances for
land scenes. Terrain-projected radiances are available only for
land locations specified by the land mask implicit within the
terrain-projected radiance data set (Jovanovic et al., 1998).
Identification of ellipsoid-projected radiances over ocean is
accomplished by noting those locations for which the terrain-
projected radiances do not exist. We used the MISR red ra-
diances in the space-oblique mercator projection in which they
come. Images of MISR data in Fig. 4 are for the data in their
native space-oblique mercator projection.

We investigated classification accuracies of the MODIS op-
erational cloud mask algorithm and of classifiers trained with
MODIS radiances and features based on these radiances. For
this reason both MODIS radiance and cloud mask files were



Fig. 4. MISR a) nadir and b) 70.5° forward view radiance images for the third
(from top) three-block MISR scene illustrated in Fig. 2. The radiances in the two
images are presented on the same linear scale for comparative purposes, with
white representing large radiance values and black small radiance values.
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necessary. All 36 1-km resolution radiances were extracted
from collection 4 MOD021KM files, whereas the 1-km res-
olution cloud mask results were extracted from collection 4
MOD35_L2 files.

The 36 spectral radiances and cloud mask results for each
pixel, together with the pixel latitude and longitude, were ex-
tracted from the MODIS files. The latitudes and longitudes
of MODIS pixels were subsequently used to project the MODIS
1-km resolution radiances and cloud mask results into the 1.1-km
resolution space-oblique mercator projection of theMISR data. A
nearest-neighbor algorithm assigned one set of projected MODIS
pixel values to each MISR space-oblique mercator grid point
location. Images of MODIS data in Fig. 3 are for MODIS data in
MISR's space-oblique mercator projection.

In the last step MISR and MODIS radiances were trans-
formed into the three MISR and six MODIS operational features
for cloud detection in daytime polar regions. The MODIS
radiances and features, which are of 1-km resolution, are reported
on the 1.1-km MISR grid. The MISR 275-m resolution angular
red radiances are used in groups of 8 by 8, i.e., 2.2 km by 2.2 km,
to compute the MISR spatial linear correlation and standard
deviation features with the results reported on the 1.1-km MISR
grid. The 275-m resolution angular red radiances were then
averaged to 1.1-km resolution for computation of the third MISR
feature, called the normalized difference angular index (NDAI).
That is, all three MISR features are reported on the 1.1-km
MISR grid with two of them of 2.2-km resolution and the other
of 1.1-km resolution.

The MISR and MODIS radiance and feature data were
divided into scenes composed of three of MISR's 180 blocks
along the Terra satellite orbit (black boxes in Fig. 2). Each three-
block scene of MISR and MODIS data consists of approx-
imately 384 across track by 384 along track useable pixels, all
with 1.1-km grid spacing. With 57 scenes of 384 by 384 useable
pixels per scene we would expect to have 8.405 million pixels
for this study. However, we have only 7.114 million pixels. The
difference is a result of the MISR nadir and four forward-view
blocks of 384 by 384 radiances not perfectly overlapping with
each other. An example of the offsets between images from the
different MISR camera views is shown in Fig. 4, in which the
forward-view camera image is offset to the west of the nadir-
view camera image.

2.2. The expert labels

For each three-block scene images of the MODIS spectral
radiances useful for cloud detection, i.e., Bands 1–7, 17–23, 26–
29, and 31–35, were cataloged into a file in which switching
between images was relatively easy. Images of the nine MISR
ellipsoid-projected red radiance data sets were made into an
animated movie that enabled scanning through the nine images,
starting from the DF (forward-view) camera image and ending
with the DA (aft-view) camera image. The labelling process
started with inspection of the MISR movie played at varying scan
rates. The apparent motions in the MISR movies of clouds,
shadows and high altitude land that result from changing projec-
tion locations from one camera to the next are a powerful method
for manual cloud detection. This process, coupled with inspection
of the MODIS radiances as necessary, enabled unambiguous
identification of optically thin clouds over any surface and op-
tically thick clouds over bright, white surfaces, such as glacial ice
flows in the valleys of the coastal mountains of Greenland.
Software image analysis tools were subsequently used to label the
pixels in MISR nadir camera images as clear or cloudy.

Our subjective impression was that the MISR and MODIS
radiances were sufficient by themselves to label as clear or
cloudy all of the pixels in each three-block scene. To do so,
however, would take an inordinate amount of time. Most of the
arctic clouds in the 10 orbits processed for this study were
laminar in nature. In the labelling process the cores of clear and
cloudy regions were labelled, usually up to, but not including,
cloud edges. Labels were applied throughout each scene in
order to sample a range of illumination and view geometries for
a large variety of surface types. We labelled 2.685 million of the
3.946 million pixels (i.e., 68%) from the 32 partly cloudy scenes
and 2.401 million of the 3.168 million pixels (i.e., 76%) from
the 25 completely clear and overcast scenes.

The goal of our labelling process was to provide accurate
identification of clear and cloudy pixels, where a clear pixel was
free of any cloud and a cloudy pixel contained at least some
cloud. By labelling the cores of clear and cloudy regions, and
avoiding their edges, we most likely labelled only completely
clear and cloud overcast pixels. This expectation is a reasonable
one to us given that broken, sub-pixel (less than 1-km in lateral
extent) clouds were not prevalent in our study. The lack of small
cloud elements and the occurrence of clear and cloudy areas
over large spatial scales limits the deleterious impact of sub-
pixel cloudiness and cloud edges on our results.
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The drawbacks of our approach are two-fold. By not label-
ling the edges of clear and cloudy regions we may limit the
extent of labelled data in the space of radiances and features in
which the classifiers operate, with the result that the classifier
boundaries may not be optimally positioned. A second draw-
back is that we cannot evaluate classifier performance near
cloud edges, which contain pixels that may be difficult to
classify as clear or cloudy. As a result, the classification ac-
curacies that we report are upper bounds on the performance of
the classifiers tested in this study and actual performances for all
pixels in a scene will be less by some unknown amount. This is
true of the Fisher's quadratic analysis (QDA) classifier results,
as it is for the MODIS operational cloud mask algorithm results.

Assessing quantitatively the performance of any MISR or
MODIS cloud mask algorithm near cloud edges is difficult at
best. Ground-based data from active sensing systems are too
sparse to assess rigorously such algorithms over regional to
global spatial scales. The Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) has high spatial
resolution, making it suitable for studying sub-pixel optically
thick clouds within MISR and MODIS pixels, but it lacks the
richness of spectral and angular information that MISR and
MODIS have for detecting optically thin clouds over snow and
ice surfaces. The best data for assessing the performance of the
classifiers would be space-based lidar data coincident with
MISR and MODIS data, but such data do not exist.

2.3. The three MISR features

The three MISR features (Table 1; Shi et al., 2004) for this
study require radiances originating from land- and sea-ice
surfaces to have the same grid point locations in the images
from the five MISR cameras used in the study. Therefore, for
ocean scenes with sea ice we used MISR ellipsoid-projected
radiances and for land terrain-projected radiances. With this
choice radiances from all MISR cameras that originate from the
same land or sea ice surface have an identical grid point location
in the images. This attribute of MISR radiances allows for
unique cloud detection features.

If a cloud is above the underlying ocean or land surface, the
radiances associated with the cloud will have different locations
in the ellipsoid- and terrain-projected images for all MISR
cameras. Now assume that the spatial pattern of radiances
associated with a surface or cloud object is similar for the five
MISR camera views. Further assume that the spatial patterns of
radiances from two different clouds, or different parts of the
same cloud, have no correlation with each other between any
two MISR views. If these assumptions are valid, which they
appear to be, the spatial correlation of radiances from the same
grid locations between any two MISR views will be high for
clear (cloud-free) oceanic regions in the ellipsoid-projected
images and land-surface regions in the terrain-projected images.
The spatial correlation will be low when clouds above the ocean
or land surface obscure either one or both of any two MISR
views.

The feature that we used to test the spatial correlation of
radiances from the same grid point locations between two
different views is the linear correlation (LC) of eight by eight
groups of 275-m resolution MISR red radiances centered on one
1.1-km grid point location indexed by (i, j):

LCij ¼

X4iþ2

k¼4i−5

P4jþ2

l¼4j−5
ðIf ;kl−

P
If ;ijÞðIn;kl−

P
In;ijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ;ijrn;ij

p ; ð1Þ

where If,kl and In,kl are the MISR forward- and nadir-view
275-m resolution radiances at location (k, l),

P
If ;ij and σf,ij are

the mean and standard deviation of the 64 forward-view
radiances associated with location (i, j), and

P
In;ij and σn,ij are

similarly defined for the nadir-view radiances. The linear
correlation is computed from 64 275-m resolution radiances
covering 2.2 km by 2.2 km of area and is attributed to the
1.1 km by 1.1 km area at the center of the 2.2 km by 2.2 km
area in order to match the spatial resolution of the expert
labels and MODIS data. The choice of 64 radiances was a
trade-off between restricting the linear correlation to a small
area and having sufficient statistics to reliably compute the
linear correlation. The means are arithmetic averages and the
standard deviations are given by

rfn;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
64−1

� � X4iþ2

k¼4i−5

X4jþ2

l¼4j−5
ðIfn;kl−

P
Ifn;ijÞ2

vuut : ð2Þ

The linear correlation feature is assumed to return a high
value for surface objects and a low value for clouds. Locally
(i.e., 2.2 km by 2.2 km) smooth surface objects, in this study
always glacial ice and snow regions, and extremely low (less
than 500 m) altitude clouds and fog are problematic. For locally
smooth surface objects the spatial variations of nadir- and
forward-view radiances are sufficiently small that the linear
correlations between the two views are low. To test for locally
smooth surface features the standard deviation (σn,ij) of the
nadir-view radiances over eight by eight 275-m resolution
radiances is a useful feature.

Exploratory data analysis indicated that the MISR 70.5°
forward view was not best for cloud detection using linear
correlations between MISR camera pairs, hence we used MISR
camera views closer to nadir. We computed linear correlations
between MISR nadir and 26.1° forward view and MISR nadir
and 45.6° forward view red radiances and averaged the two
results to obtain the linear correlation feature.

The third, and final, MISR cloud detection feature is mo-
tivated by Fig. 4. Surface-leaving (scattered) radiances at visible
wavelengths are more isotropic from surface snow and ice than
they are from low-altitude, overcast, relatively smooth clouds
for which forward scattering dominates. As such, the differ-
ences between radiances from the nadir- and forward-view
MISR cameras are useful for low-altitude cloud detection over
Arctic snow- and ice-covered surfaces. (Note that forward
scattering of radiation from clouds over Antarctica is recorded
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by the aft-view MISR cameras.) This finding motivates use of
the ratio

NDAIij ¼ If ;ij−In;ij
If ;ij þ In;ij

; ð3Þ

called the normalized difference angular index (NDAI; Nolin
et al., 2002), as the third feature. The radiances in NDAI have
1.1-km resolution, similar to the spatial resolution of theMODIS
radiances and features, and are obtained by averaging 16 275-m
resolution red radiances over a 1.1 km by 1.1 km area. In the
current implementation over the Arctic theMISR 70.5° forward-
view radiance, i.e., the most forward-scattered radiance recorded
by MISR, is compared with the radiance from the nadir camera.

2.4. Classifiers for MISR and MODIS radiances and features

To label automatically radiances as cloudy or clear (i.e., cloud
free) using the five angular MISR radiances, the three MISR
features, the six MODIS radiances, and the six MODIS features,
Fisher's quadratic discriminate analysis (QDA), which requires
training labels, is employed. For one set of experiments training
labels are from the expert labels and in a second set from those
pixels for which results from theMODIS operational cloudmask
and a second automated algorithm applied to the three MISR
features agree. Results from the first set of experiments represent
the best possible in our current set-up, whereas the second set of
experiments represent automatic labelling schemes to be used
operationally for cloud mask generation. Performances of the
QDA classifiers in separating clear from cloudy pixels are
always assessed with expert labels. In training of the classifiers
with expert labels only half of the expert labels (chosen at
random) are used and the remaining half is withheld for testing.
All of the expert labels are used to assess the performances of the
automated algorithms.

Single-value threshold labelling methods, i.e., single-value
thresholds applied separately to each feature and reduced to a
single clear/cloudy classification using a decision tree, are eval-
uated relative to the expert- and automatic-trained QDA classifier
results. To make the study relevant to MODIS operational pro-
cessingMODIS cloud mask results were used directly rather than
developing independent single-value thresholds to be applied to
each MODIS feature. The rationale for the MODIS single-value
thresholds and decision tree (i.e., the MODIS operational cloud
mask algorithm) is described byAckerman et al. (1998, 2002) and
is not reproduced here.

2.4.1. MISR single-value thresholds
Stable and robust thresholds for the linear correlation (LCij)

and standard deviation (σn,ij) were found by analyzing sets of
the three MISR features from a variety of scenes across different
orbits and visually inspecting clear and cloudy pixel classifi-
cation results obtained from them. For this study the empirically
determined threshold tLC on LCij was set to 0.75 and the
threshold tσ on σn,ij was set to 2. The appropriate threshold
tNDAI for NDAIij changed from scene to scene. On a scene-by-
scene basis NDAIij is a useful feature for separating clear and
cloudy pixels but the threshold that separates the two classes is,
unfortunately, scene dependent. We must have an automated
method for estimating the best threshold tNDAI for each scene.

The method adopted to set tNDAI was based on modelling
NDAIij values for three-block scenes as a mixture of two
Gaussian distributions, one for the cloudy pixels and the other
for the clear pixels. The choice of two Gaussian distributions to
model NDAIij values was made for two reasons. Two Gaussian
distributions fit the three-block frequency of occurrence
histograms of NDAIij well and the computation of mixed
Gaussian fits to NDAI values is relatively straightforward.
Three blocks of MISR data were modelled together, represent-
ing a compromise between ensuring both cloudy and clear areas
within the region and separability of NDAIij values for cloudy
and clear areas. Modelling more than three MISR blocks of data
together provides a greater probability of having both clear and
cloudy pixels. However, histograms of NDAIij for cloudy and
clear areas in an extended block range often broaden, leading to
poorer separability.

The minimum, or dip, between the peaks of the two Gaussian
distributions was taken as tNDAI, assuming, of course, that there
was a minimum in the distribution. Manually analyzing several
three-block scenes we found that the minima between the peaks
of the two Gaussian distributions, and hence tNDAI, generally
fell between 0.08 and 0.40. If no minimum was found between
the peaks of the two Gaussian distributions or there was a
minimum but it was outside the empirically determined
expected range from 0.08 to 0.40, the threshold from either
the previous orbit or the next orbit was selected if one of the two
was available. If neither of these two thresholds existed, the
average of all available thresholds for this three-block scene
over all 10 orbits was used.

The decision tree for reducing the three MISR features to a
single clear/cloud classification, called the MISR Enhanced
Linear Correlation Matching (ELCM) algorithm, is straightfor-
ward (Shi et al., 2004). The 1.1-km by 1.1-km resolution pixel
(i, j) is classified as clear if σn,ijb tσ or if LCijN tLC and
NDAIijb tNDAI. When this test fails, the region is labeled as
cloudy.

2.4.2. Quadratic discriminate analysis classifier
Single-value thresholds divide a multi-dimensional feature

space into rectangular regions. However, the boundary between
clear and cloudy pixels may be nonlinear and may not
particularly follow any one of the three coordinate axes (Shi,
2005). Fisher's quadratic discriminate analysis supplies a
quadratic classification boundary that is expected to be more
accurate than single-value thresholds applied to each feature
separately. Implementation of quadratic discriminate analysis
requires training data to construct the boundaries (e.g., Mardia
et al., 1979; Ripley, 1996).

In a two class (i.e., clear and cloudy) classification problem,
quadratic discriminate analysis models each class probability
density as a multivariate Gaussian distribution:

fkðxÞ ¼ 1

ð2pÞp=2jR
k
j1=2

e
−1
2ðx−lkÞT R

−1

k
ðx−lkÞ; ð4Þ



Fig. 5. Percentage of MODIS operational cloud mask versus MISR ELCM
algorithm classifications that are correct relative to expert labels for a) the 32
partly cloudy scenes and b) the 25 completely clear and overcast scenes.
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where k=1, 2 denotes the class label (i.e., clear or cloudy), fk(x) is
the probability density function of the multi-dimensional feature
vector x belonging to class k, p is the dimension of x, μk –
Table 2
Classification accuracies and scene coverages of the three operational classifiers
for all 57 scenes, the 32 partly cloudy scenes, and the 25 completely clear and
overcast scenes

Number MISR ELCM MODIS operational Agreed

All scenes 57 91.80% 91.97% 97.75%
Coverage 100.00% 100.00% 76.58%

Land 90.32% 90.71% 98.50%
Ocean 92.33% 92.40% 97.41%

Partly cloudy 32 88.63% 90.72% 96.53%
Coverage 100.00% 100.00% 74.91%

Land 88.10% 88.47% 96.46%
Ocean 88.93% 91.34% 95.01%

Clear/overcast 25 95.39% 93.37% 99.05%
Coverage 100.00% 100.00% 78.44%

Land 94.44% 95.05% 99.25%
Ocean 95.48% 92.59% 98.76%

Scene coverages are given as percentages of all pixels in the study and the
accuracy rates are for the subset of pixels for which expert labels are also
provided. The operational classifiers are the MISR ELCM algorithm, the
MODIS operational cloud mask algorithm, and those pixels for which the MISR
ELCM andMODIS operational cloud mask algorithms agreed. Ocean results are
for Baffin Bay and the Arctic Ocean north and east of Greenland. The land
results are primarily from northern Greenland.
a multi-dimensional vector – is the population mean of the multi-
dimensional feature vectors, and∑k – a multi-dimensional square
matrix – is the population variance amongst the feature vectors.
Let πk be the prior probability of class k, which is simply the
probability of class k in the training data. An a posterior
distribution for x belonging to class k is then given by

PðxaClass kjX ¼ xÞ ¼ fkðxÞpk
f1ðxÞp1 þ f2ðxÞp2 : ð5Þ

The classification rule of quadratic discriminate analysis is to
place x in the class that has the largest a posterior probability for x.

In summary, the parameters πk, μk, and∑k are estimated by the
empirical class proportions, means, and variances in the training
data and subsequently substituted into the above two equations to
form the classifier. Eq. (5) for a novel feature vector x is evaluated
for the clear and cloudy classes and the novel feature vector is
assigned to the class with the highest probability.
2.4.3. Radiance- and feature-based classification tests
As a test of the value ofMODIS andMISR radiances for cloud

detection quadratic discriminant analysis classifiers were trained
Fig. 6. Percentage of correct classifications relative to the expert labels of those
pixels for which the MODIS operational cloud mask and MISR ELCM
algorithms agreed versus the three-block scene coverage (i.e., percent of pixels
in the three-block scenes which were in agreement) for a) the 32 partly cloudy
scenes and b) the 25 completely clear and overcast scenes.
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on half the expert labels using the five MISR radiances from the
nadir and four forward-view cameras, the three MISR features,
the six MODIS radiances for daytime cloud detection in polar
regions, the sixMODIS features, the fiveMISR angular radiances
combined with the six MODIS spectral radiances, and the three
MISR features combined with the six MODIS features as the
classifier feature vectors. These six classifiers were subsequently
Fig. 7. Percentage of MODIS- and/or MISR-based classifications that are correct relat
trained on the other half of expert labels using a) either five MISR or six MODIS rad
input to the classifier, and c) either combined MISR and MODIS radiances or f
classifications that are correct relative to all of the expert labels for a quadratic discrim
MODIS operational cloud mask algorithms agreed using d) either five MISR or six
features as input to the classifier, and f ) either combined MISR and MODIS radian
tested on the remaining half of the expert labels to assess the value
ofMISR andMODIS radiances for cloud detection. To assess the
effectiveness of single-value threshold classifiers the MODIS
operational cloud mask results are evaluated relative to all of the
expert labels, as are results from the MISR ELCM algorithm.

In the last classification test an attempt is made to develop an
automated algorithm that improves upon the results from the
ive to one-half of the expert labels for a quadratic discriminant analysis classifier
iances as input to the classifier, b) either three MISR or six MODIS features as
eatures as input to the classifier. Percentage of MODIS- and/or MISR-based
inant analysis classifier trained on those pixels for which the MISR ELCM and

MODIS radiances as input to the classifier, e) either three MISR or six MODIS
ces or features as input to the classifier.



Table 3
Classification accuracies (with 100% scene coverages) of QDA classifiers
trained on expert labels, those pixels for which the MODIS operational cloud
mask and MISR ELCM algorithms agreed, and only the MODIS operational
cloud mask results

Training
labels

MISR-R MISR-F MODIS-R MODIS-F All-R All-F

Expert labels 87.51% 88.45% 96.43% 95.98% 96.98% 96.99%
Land 87.25% 88.41% 96.43% 96.93% 97.49% 97.66%
Ocean 88.22% 88.54% 96.43% 93.44% 95.59% 95.27%

Agreed pixels 85.23% 88.05% 93.62% 93.61% 93.74% 93.39%
Land 84.97% 87.94% 93.57% 94.36% 94.26% 93.91%
Ocean 85.95% 88.35% 93.72% 91.64% 92.32% 92.07%

MODIS mask NA NA 89.02% 88.88% NA NA
Land NA NA 88.93% 91.33% NA NA
Ocean NA NA 89.40% 83.00% NA NA

The QDA-based input feature vectors are the five MISR radiances (MISR-R),
the three MISR features (MISR-F), the six MODIS radiances (MODIS-R), the
six MODIS features (MODIS-F), the five MISR and six MODIS radiances
(All-R), and the three MISR and six MODIS features (All-F). Ocean results are
for Baffin Bay and the Arctic Ocean north and east of Greenland. The land results
are primarily from northern Greenland.

Table 4
Comparisons (in percent agreement) of the MISR ELCM, MODIS operational
and quadratic discriminant analysis (QDA) classifiers (trained on those pixels
for which the MISR ELCM and MODIS operational cloud mask algorithms
agreed) when applied to the (68%) labeled and (32%) unlabeled pixels from the
32 partly cloudy scenes

Labeled pixels Unlabeled pixels

MISR ELCM/MODIS operational 87.77% (58.06%) 71.15% (77.27%)
All-R/MISR ELCM 87.76% (39.28%) 68.11% (22.89%)
All-R/MODIS operational 91.97% (41.93%) 82.92% (53.28%)
All-F/MISR ELCM 80.14% (19.49%) 67.16% (18.84%)
All-F/MODIS operational 83.08% (19.62%) 79.79% (44.95%)

The QDA-based input vectors are the fiveMISR and sixMODIS radiances (All-R)
and the three MISR and six MODIS features (All-F). The numbers in parentheses
are the percent of those pixels in disagreement that are labeled as cloudy by the
algorithm listed first in the left column and clear by the algorithm listed second.
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single-value threshold algorithms applied separately toMISR and
MODIS data. The approach adopted here treats as training data
those pixels for which the MODIS operational cloud mask and
MISR ELCM algorithms agree. These automatically generated
training data, which cover only a subset of pixels in a scene, were
then used to train one quadratic discriminant analysis classifier
based on the five MISR and six MODIS radiances and a second
classifier based on the threeMISR and sixMODIS features. Once
the quadratic discriminant analysis classifiers were trained using
the automatic labels, they were used to classify all of the pixels in
a scene as either clear or cloudy and their performances were
evaluated using all of the expert labels.

3. Results

Classification accuracies, relative to the expert labels, of the
MISR ELCM andMODIS operational cloud mask (single-value
threshold) algorithms are illustrated in Fig. 5 and Table 2. For
the 32 partly cloudy scenes classification accuracies of these
two algorithms were 88.63% and 90.72%. For the 25
completely clear and overcast scenes the accuracy of the two
algorithms increased to 95.39% and 93.37%. For all 57 scenes
classification accuracies of these two algorithms were 91.80%
and 91.97%. We separated these results, as well as the others
that follow, into those for land, primarily northern Greenland,
and ocean, primarily Baffin Bay and the Arctic Ocean north and
east of Greenland. We found that classification accuracies for
land and ocean scenes were similar, which is not unexpected
given that they are both primarily snow- and ice-covered,
precluding the need to discuss them separately.

The subset of MISR ELCM and MODIS operational cloud
mask results that agree with each other have classification
accuracies, relative to the expert labels, of 96.53% and 99.05%
for the 32 partly cloudy and 25 completely clear and overcast
scenes (Fig. 6; Table 2). This subset of pixels covers 74.91% of
the partly cloudy scenes and 78.44% of the completely clear and
overcast scenes. These results suggest that this subset of pixels,
which is generated by two automated cloud detection
algorithms, may be suitable for training a quadratic discriminant
analysis classifier for each scene, which in turn may lead to high
classification accuracies with 100% coverage.

The value of MISR and MODIS radiances for cloud detec-
tion is next quantified relative to expert labels using a quadratic
discriminant analysis classifier. The quadratic discriminant
analysis classifier is trained using one half of the 2.685 million
1.1-km resolution expert labels from the 32 partly cloudy
scenes. For this classifier training is equivalent to computation
of πk, μk, and∑k in Eq. (4) using the different sets of input data—
MISR angular radiances, MISR features, MODIS spectral
radiances, MODIS features, MISR angular radiances combined
withMODIS spectral radiances andMISR features combined with
MODIS features. Once the classifier was trained with clear and
cloudy pixels from scenes with both, the two-class (i.e., clear and
cloudy) probabilities were computed via Eq. (5) for the remaining
half of the pixels with expert labels and used to classify each pixel
as either clear or cloudy. The percentage of correct classifications
relative to the expert labels was then computed.

Fig. 7a–c illustrates scene-by-scene results from this
analysis. Overall, the MISR radiance (MISR-R), MISR feature
(MISR-F), MODIS radiance (MODIS-R), and MODIS feature
(MODIS-F) classifiers were found to be correct for 87.51%,
88.45%, 96.43%, and 95.98% of the expert labels (Table 3). For
combined MODIS and MISR radiances (All-R) the classifica-
tion accuracy was 96.98% (Table 3). For combined MODIS and
MISR features (All-F) the classification accuracy was 96.99%.
For the current analysis approach these results represent the best
possible and are the ones against which other classification
methods are compared.

Quadratic discriminant analysis classifiers cannot be trained
on scenes with pixels of only one type (i.e., clear or cloudy)
because implicit in the approach is a two-class model. For
completely clear and overcast scenes values for πk, μk, and ∑k

obtained from other partly cloudy scenes were used. Extracting
values for these three parameters from the locations of the
completely clear and overcast scenes, but from orbits that
occurred 16 days prior to the completely clear and overcast



Table 5
Of the expertly labeled cloudy and clear pixels in disagreement between two
masks in Table 4, these are the percentages of correct and incorrect cloudy and
clear classifications of the two masks relative to them

Cloudy Cloudy Clear Clear

1st Cloudy 1st Clear 1st Cloudy 1st Clear

2nd Clear 2nd Cloudy 2nd Clear 2nd Cloudy

MISR ELCM/MODIS
operational

54.58 45.42 28.10 71.90

All-R/MISR ELCM 52.07 47.93 44.89 55.11
All-R/MODIS operational 47.98 52.02 17.44 82.56
All-F/MISR ELCM 23.70 76.30 33.36 66.64
All-F/MODIS operational 18.75 81.25 13.04 86.96
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scenes and that contained partly cloudy scenes, led to classi-
fication accuracies of approximately 94% for the 25 completely
clear and overcast scenes.

MODIS radiance (feature) input vectors with expert label
training of a QDA classifier produce classification accuracies of
96.43% (95.98%). These results might suggest that MODIS
radiance data alone in a QDA classifier might be optimal.
However, without scene-by-scene expert labels these accuracies
are not possible. Training a QDA classifier on MODIS oper-
ational cloud mask results leads to classification accuracies of
89.02% for MODIS radiance input vectors to the QDA classifier
and 88.88% for MODIS feature input vectors (Table 3).

The high classification accuracies of those pixels for which
the MISR ELCM andMODIS operational masks agreed suggest
the possibility of using these pixels as training labels. To test this
idea quadratic discriminant analysis classifiers were trained on
this subset of pixels on a scene-by-scene basis for the 32 partly
cloudy scenes and evaluated against expert labels for the scenes.
Overall classification accuracies were 85.23% for MISR radian-
ces, 88.05% for MISR features, 93.62% for MODIS radiances,
93.61% for MODIS features, 93.74% for MISR radiances
combined with MODIS radiances, and 93.39% for MISR fea-
tures combined with MODIS features (Table 3). Scene-by-scene
results are illustrated in Fig. 7d–f.

To characterize the relative performances of the MISR
ELCM, MODIS operational, and quadratic discriminant anal-
ysis classifiers on unlabeled pixels we trained quadratic dis-
criminant analysis classifiers using those pixels for which the
MISR ELCM and MODIS operational masks agreed, applied
them to the (68%) labeled and (32%) unlabeled pixels in the 32
partly cloudy scenes, and compared the agreement rates of their
results with those from the MISR ELCM and MODIS oper-
ational cloud mask algorithms (Table 4). In these comparisons
we computed the relative tendencies for the algorithms to clas-
sify pixels as cloudy or clear. Relative to the expertly labeled
pixels, we also computed the percentages of correct and in-
correct cloudy and clear classifications of the two masks for
those pixels for which they disagreed (Table 5).

4. Discussion

With quadratic discriminant analysis as the classifier, expert
labels as training and assessment data and MODIS radiances as
the classifier input vectors, a classification accuracy of 96.43%
was achieved for the 32 partly cloudy scenes in the study. Using
MODIS features as classifier input vectors led to a classification
accuracy of 95.98%. With MISR radiances and features as
classifier input vectors classification accuracies of 87.51% and
88.45% were achieved (Fig. 7a,b; Table 3). The differences
between the MODIS and MISR results are significant at the
99%-level using a t-test, indicating that MODIS data have more
information for separating clouds from snow- and ice-covered
surfaces than MISR data. Combining MISR and MODIS
radiances (features) in a quadratic discriminant analysis
classifier slightly improved classification rates to 96.98%
(96.99%; Fig. 7c, Table 3). The differences between these
results and the MODIS- andMISR-only results are significant at
the 99%-level using a t-test. None of these classification
accuracies can be obtained operationally because they rely on
the availability of expert labels for all scenes to which they are
applied. They do lead to the important observation on how well
cloudy and clear pixels are separable in the different feature
spaces.

Shi et al. (2004) investigated the performance of classifiers
more sophisticated than quadratic discriminant analysis,
including a range of support vector machine approaches, but
with little improvement in performance relative to quadratic
discriminant analysis classifiers. These results suggest that the
nonlinear classification boundaries of quadratic discriminant
analysis classifiers are sufficiently rich to separate clear and
cloudy pixels in daytime polar regions using MISR and MODIS
data as feature vectors.

One of the more interesting findings of this study is the
classification accuracies (i.e., 96.53% and 99.05%) and scene
coverages (i.e., 74.91% and 78.44%) for the partly cloudy and
completely clear and overcast scenes of those pixels for which
the automated MODIS operational cloud mask and MISR
ELCM algorithms were in agreement and for which there were
expert labels. Having spectral- and angular-based single-value
threshold results in agreement is almost an error free indicator of
the class type (i.e., clear or cloudy) for pixels in this study.

This fortuitous result allowed for training a quadratic
discriminant analysis classifier scene-by-scene using those
pixels in a scene for which the MODIS operational cloud
mask and MISR ELCM algorithms agreed. Using the three
MISR ELCM features and the six MODIS operational cloud
mask features in a quadratic discriminant analysis classifier (i.e.,
All-F) with training data produced by the two automated
algorithms produced a classification accuracy of 93.39% with
100% coverage for the 32 partly cloudy scenes. With the five
MISR angular radiances and six MODIS spectral radiances as
input to a quadratic discriminant analysis classifier (i.e., All-R)
a classification accuracy of 93.74% was attained. These results
represent a significant improvement (at the 95%-level of the t-
test) compared to the single-value threshold results. This
improvement is a result of a combination of automatically
generated, accurate training data and a flexible and adaptive
classifier.

Comparing the relative performances of the MISR ELCM
algorithm, the MODIS operational cloud mask algorithm and



Table 6
Classification accuracies obtained by combining the MISR ELCM algorithm
results from completely clear and overcast scenes with the automatic-trained
QDA classifier results for partly cloudy scenes

Number MISR and QDA-R MISR and QDA-F

All scenes 57 94.51% 94.43%
Land 94.43% 94.30%
Ocean 94.67% 94.57%
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the two quadratic discriminant analysis classifiers (Table 4), we
found that the agreement rates between cloud mask algorithms
were from 3% to 20% lower for the unlabeled, as compared to
labeled, pixels. This is not unexpected as the un-labeled pixels
contained the cloud edges where classification of pixels is more
difficult. The algorithms (i.e., the MISR ELCM algorithm and
the QDA classifier with MISR and MODIS features as input
vectors, i.e., All-F) using groups of neighboring pixels (i.e.,
MISR features) as part of their input vectors increased in
cloudiness relative to the single pixel algorithms (i.e., the
MODIS operational cloud mask algorithm and the QDA
classifier with MISR and MODIS radiances as input vectors,
i.e., All-R) from the labeled to unlabeled pixels. One possible
explanation for this result is that the classifiers using groups of
pixels in some of their features tend to classify clear pixels near
cloud edges as cloudy ones.

For the labeled pixels the MODIS operational cloud mask
algorithm was more likely than the others to classify incorrectly
clear pixels as cloudy and the QDA feature-based classifier was
more likely to classify incorrectly cloudy pixels as clear
(Table 5). Both of these errors contribute to the small percentage
(19.62%) of pixels in disagreement labeled as cloudy by the
QDA feature-based classifier (i.e., All-F) but clear by the
MODIS operational cloud mask. The large increase from
labeled to unlabeled pixels of the percentage of pixels classified
as cloudy by the QDA feature-based classifier (i.e., All-F) but
clear by the MODIS operational cloud mask algorithm (i.e.,
from 19.62% to 44.95%) is consistent with the interpretation
that classifiers with input feature vectors based on groups of
pixels are more likely to classify pixels in the vicinity of cloud
edges as cloudy than the single pixel classifiers.

The two-class approach adopted for the quadratic discrim-
inant analysis classifier is not appropriate for completely clear
and overcast scenes with only one class type. For the 25 com-
pletely clear and overcast scenes, though, the MISR ELCM and
MODIS operational cloud mask algorithms produced classifi-
cation accuracies of 95.39% and 93.37% with 100% coverage.
These results are comparable to those from the automatically
trained quadratic discriminant analysis classifiers for the partly
cloudy scenes. An automated algorithm that combines single-
value threshold results for completely clear and overcast scenes
with quadratic discriminant analysis results for partly cloudy
scenes had classification accuracies of approximately 94.5%
(Table 6). This represents a significant (at the 95%-level of a t-
test) improvement over current MISR ELCM and MODIS
operational cloud mask algorithm classification accuracies of
91.80% and 91.97%, respectively, for all 57 scenes.

The MODIS and MISR features are relatively stable for clear
and cloudy pixels from scene to scene. However, the optimal
thresholds that separate clear from cloudy pixels do change from
scene to scene and this scene dependence is the source of errors
in the single-value threshold classifiers. The high classification
accuracies of pixels for which the MODIS operational cloud
mask and MISR ELCM algorithms agree demonstrate that tests
using both spectral and angular information are filters for
incorrect classifications in either of the two approaches alone.
Training a QDA classifier scene-by-scene using pixels for which
the MODIS operational cloud mask and MISR ELCM al-
gorithms agree produces a classifier with thresholds that are also
scene dependent. For such a classifier stability of input feature
vectors from scene-to-scene is no longer an issue and one would
expect similar results for radiances or features as the input vector
elements. As Fig. 7c,f demonstrates, this is the case.

5. Conclusions

In isolation MODIS spectral radiances contained more infor-
mation for cloud detection than MISR angular radiances. How-
ever, the most salient finding in the study was the extremely
small classification error rates (3.5% in partly cloudy scenes and
0.9% in completely clear and overcast scenes) when MODIS
operational cloud mask and MISR ELCM algorithm results
were combined in an automated cloud detection scheme. The
relatively large (about 75%) spatial coverage of these combined
results permitted automated training of scene-dependent
classifiers whose error rate, when applied to all of the pixels
in every scene, was about 5%. The information content in MISR
and MODIS radiances for operational detection of clouds in
daytime polar regions is quite good, with good meaning an error
rate less than approximately 5% relative to the expert labels
applied to the 57 scenes tested in this study. This is an optimistic
assessment. We did not label 32% of the pixels in the 32 partly
cloudy scenes because these pixels were often in the vicinity of
cloud edges and the expert labels were applied only to unam-
biguous regions of cloud and clear sky. Our results demon-
strated that the rates of agreement between the different cloud
masks decreased, relative to the labeled pixels, by 3% to 20%
for these unlabeled pixels. We conclude that complicated mix-
tures of clear and cloudy pixels, such as at cloud edges, will
have higher (and difficult to quantify) error rates.

The MISR swath is much smaller than that of MODIS and it
takes MISR two days to view all of the Arctic. As this study has
demonstrated for a limited data set, MODIS spectral radiances
lead to higher cloud classification accuracies than MISR angular
radiances. One might then question the value of MISR radiances
for cloud detection in polar regions. The value of MISR ra-
diances for cloud detection in daytime polar regions is several-
fold. First, this study demonstrated that cloud detection errors
from the automatedMISR ELCM andMODIS operational cloud
mask algorithms occurred for different pixels, hence the error
rates of an algorithm based on both are smaller than for the two
algorithms separately. Second, MODIS radiance (feature) input
vectors, with those pixels for which the MISR ELCM and
MODIS operational cloud mask algorithms agreed as training
data, for a QDA classifier produced classification accuracies of
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93.62% (93.61%) over the 32 partly cloudy scenes. This
represents a significant (at the 95%-level of a t-test) improve-
ment over the MODIS operational cloud mask algorithm
classification accuracies of 90.72%. Third, we found identifica-
tion of cloudy (but not clear) pixels by the MISR stereo-derived
cloud mask algorithm to be extremely reliable, with a
classification accuracy of approximately 99%. That is, if the
MISR stereo-derived cloud mask classifies a pixel as cloudy, it is
cloudy. We did not discuss this result in this paper because the
spatial coverage of the MISR stereo-derived cloud mask in the
Arctic is quite poor (approximately 26.64%) for the MISR data
products that we used.

These findings suggest that MISR data are useful for
improving cloud classification accuracies where MISR and
MODIS data overlap and that MISR data might be useful in
refining cloud detection thresholds applied to MODIS radiances
and features from that part of the MODIS swath that does not
overlap with the MISR swath. These results also suggest that
further analysis of daytime cloud masks obtained from MISR
and MODIS radiances over much larger spatial and temporal
scales is a worthwhile endeavor. With reasonable cloud mask
results, analysis of cloud-top height retrievals from MODIS and
MISR will not be dominated by errors in cloud detection. With
more reliable cloud detections and cloud-top height assign-
ments in daytime polar regions improvements in the top of
atmosphere and surface energy budgets are feasible.
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